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PREFACE

This document is version 3.2 of the RenderMan Interface Specification, issued July, 2000. It
supercedes version 3.1, originally published in September, 1989 and revised in July, 1995,
and version 3.0, originally published in May, 1988.

Version 3.2 makes fundamental changes to version 3.1, including the addition of many new
features, corrections of unclear or ambiguous material, and deletion of API calls that have
been depricated over the years.

This document is the official technical specification for the RenderMan Interface. It is quite
terse and requires substantial prior knowledge of computer graphics in general and pho-
torealistic image synthesis in particular. For a more casual reference to the RenderMan
Interface, the reader is directed to Advanced RenderMan: Creating CGI for Motion Pictures
(Anthony Apodaca and Larry Gritz, 1999). The first and second printings of Advanced
RenderMan correspond (except for minor errata) to version 3.2 of the RenderMan Interface
Specification. Readers are also directed to The RenderMan Companion: A Programmer’s Guide
to Realistic Computer Graphics (Steve Upstill 1989), which corresponds (except for minor er-
rata) to version 3.1 of the RenderMan Interface Specification.

Appendix I gives an overview of what has changed between version 3.1 and 3.2 of the
RenderMan Interface Specification.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by any means, electronic, mechanical, photocopying, recording, or other-
wise, without the prior written permission of Pixar. The information in this publication is
furnished for informational use only, is subject to change without notice, and should not
be construed as a commitment by Pixar. Pixar assumes no responsibility or liability for any
errors or inaccuracies that may appear in this publication.
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Part I

The RenderMan Interface
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Section 1

INTRODUCTION

The RenderMan Interface is a standard interface between modeling programs and render-
ing programs capable of producing photorealistic quality images. A rendering program
implementing the RenderMan Interface differs from an implementation of earlier graphics
standards in that:

• A photorealistic rendering program must simulate a real camera and its many at-
tributes besides just position and direction of view. High quality implies that the
simulation does not introduce artifacts from the computational process. Expressed
in the terminology of computer graphics, this means that a photorealistic rendering
program must be capable of:

– hidden surface removal so that only visible objects appear in the computed im-
age,

– spatial filtering so that aliasing artifacts are not present,

– dithering so that quantization artifacts are not noticeable,

– temporal filtering so that the opening and closing of the shutter causes moving
objects to be blurred,

– and depth of field so that only objects at the current focal distance are sharply in
focus.

• A photorealistic rendering program must also accept curved geometric primitives
so that not only can geometry be accurately displayed, but also so that the basic
shapes are rich enough to include the diversity of man-made and natural objects.
This requires patches, quadrics, and representations of solids, as well as the ability to
deal with complicated scenes containing on the order of 10,000 to 1,000,000 geometric
primitives.

• A photorealistic rendering program must be capable of simulating the optical prop-
erties of different materials and light sources. This includes surface shading models
that describe how light interacts with a surface made of a given material, volume
shading models that describe how light is scattered as it traverses a region in space,
and light source models that describe the color and intensity of light emitted in dif-
ferent directions. Achieving greater realism often requires that the surface properties
of an object vary. These properties are often controlled by texture mapping an image
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onto a surface. Texture maps are used in many different ways: direct image mapping
to change the surface’s color, transparency mapping, bump mapping for changing
its normal vector, displacement mapping for modifying position, environment or re-
flection mapping for efficiently calculating global illumination, and shadow maps for
simulating the presence of shadows.

The RenderMan Interface is designed so that the information needed to specify a photore-
alistic image can be passed to different rendering programs compactly and efficiently. The
interface itself is designed to drive different hardware devices, software implementations
and rendering algorithms. Many types of rendering systems are accommodated by this in-
terface, including z-buffer-based, scanline-based, ray tracing, terrain rendering, molecule
or sphere rendering and the Reyes rendering architecture. In order to achieve this, the
interface does not specify how a picture is rendered, but instead specifies what picture is
desired. The interface is designed to be used by both batch-oriented and real-time inter-
active rendering systems. Real-time rendering is accommodated by ensuring that all the
information needed to draw a particular geometric primitive is available when the prim-
itive is defined. Both batch and real-time rendering is accommodated by making limited
use of inquiry functions and call-backs.

The RenderMan Interface is meant to be complete, but minimal, in its transfer of scene
descriptions from modeling programs to rendering programs. The interface usually pro-
vides only a single way to communicate a parameter; it is expected that the modeling front
end will provide other convenient variations. An example is color coordinate systems –
the RenderMan Interface supports multiple-component color models because a rendering
program intrinsically computes with an n-component color model. However, the Render-
Man Interface does not support all color coordinate systems because there are so many and
because they must normally be immediately converted to the color representation used by
the rendering program. Another example is geometric primitives – the primitives defined
by the RenderMan Interface are considered to be rendering primitives, not modeling prim-
itives. The primitives were chosen either because special graphics algorithms or hardware
is available to draw those primitives, or because they allow for a compact representation
of a large database. The task of converting higher-level modeling primitives to rendering
primitives must be done by the modeling program.

The RenderMan Interface is not designed to be a complete three-dimensional interactive
programming environment. Such an environment would include many capabilities not
addressed in this interface. These include: 1) screen space or two-dimensional primitives
such as annotation text, markers, and 2-D lines and curves, and 2) user-interface issues
such as window systems, input devices, events, selecting, highlighting, and incremental
redisplay.

The RenderMan Interface is a collection of procedures to transfer the description of a scene
to the rendering program. These procedures are described in Part I. A rendering program
takes this input and produces an image. This image can be immediately displayed on a
given display device or saved in an image file. The output image may contain color as well
as coverage and depth information for postprocessing. Image files are also used to input
texture maps. This document does not specify a ”standard format” for image files.

The RenderMan Shading Language is a programming language for extending the prede-
fined functionality of the RenderMan Interface. New materials and light sources can be
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created using this language. This language is also used to specify volumetric attenuation,
displacements, and simple image processing functions. All required shading functionality
is also expressed in this language. A shading language is an essential part of a high-quality
rendering program. No single material lighting equation can ever hope to model the com-
plexity of all possible material models. The RenderMan Shading Language is described in
Part II of this document.

1.1 Features and Capabilities

The RenderMan Interface was designed in a top-down fashion by asking what information
is needed to specify a scene in enough detail so that a photorealistic image can be created.
Photorealistic image synthesis is quite challenging and many rendering programs cannot
implement all of the features provided by the RenderMan Interface. This section describes
which features are required and which are considered advanced, and therefore optional,
capabilities. The set of required features is extensive in order that application writers and
end-users may reasonably expect basic compatibility between, and a high level of perfor-
mance from, all implementations of the RenderMan Interface. Advanced capabilities are
optional only in situations where it is reasonable to expect that some rendering programs
are algorithmically incapable of supporting that capability, or where the capability is so
advanced that it is reasonable to expect that most rendering implementations will not be
able to provide it.

1.1.1 Required features

All rendering programs which implement the RenderMan Interface must implement the
interface as specified in this document. Implementations which are provided as a linkable
C library must provide entry points for all of the subroutines and functions, accepting
the parameters as described in this specification. All of the predefined types, variables
and constants (including the entire set of constant RtToken variables for the predefined
string arguments to the various RenderMan Interface subroutines) must be provided. The
C header file ri.h (see Appendix C, Language Binding Details) describes these data items.

Implementations which are provided as prelinked standalone applications must accept as
input the complete RenderMan Interface Bytestream (RIB). Such implementations may also
provide a complete RenderMan Interface library as above, which contains subroutine stubs
whose only function is to generate RIB.

All rendering programs which implement the RenderMan Interface must:

• provide the complete hierarchical graphics state, including the attribute and trans-
formation stacks and the active light list.

• perform orthographic and perspective viewing transformations.

• perform depth-based hidden-surface elimination.

• perform pixel filtering and antialiasing.
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• perform gamma correction and dithering before quantization.

• produce picture files containing any combination of RGB, A, and Z. The resolutions
of these files must be as specified by the user.

• provide all of the geometric primitives described in the specification, and provide all
of the standard primitive variables applicable to each primitive.

• provide the ability to perform shading calculations using user-supplied RenderMan
Shading Language programs. (See Part II, The RenderMan Shading Language.)

• provide the ability to index texture maps, environment maps, and shadow depth
maps. (See the section on Basic texture maps.)

• provide the fifteen standard light source, surface, volume, displacement, and imager
shaders required by the specification. Any additional shaders, and any deviations
from the standard shaders presented in this specification, must be documented by
providing the equivalent shader expressed in the RenderMan Shading Language.

Rendering programs that implement the RenderMan Interface receive all of their data
through the interface. There must not be additional subroutines required to control or
provide data to the rendering program. Data items that are substantially similar to items
already described in this specification will be supplied through the normal mechanisms,
and not through any of the implementation-specific extension mechanisms (RiAttribute ,
RiGeometry or RiOption ). Rendering programs may not provide nonstandard alterna-
tives to the existing mechanisms, such as any alternate language for programmable shad-
ing.

1.1.2 Advanced Capabilities

Rendering programs may also provide one or more of the following advanced capabilities,
though it is recognized that algorithmic limitations of a particular implementation may
restrict its ability to provide the entire feature set. If a capability is not provided by an
implementation, a specific default is required (as described in the individual sections). A
subset of the full functionality of a capability may be provided by a rendering program.
For example, a rendering program might implement Motion Blur, but only of simple trans-
formations, or only using a limited range of shutter times. Rendering programs should
describe their implementation of the following optional capabilities using the terminology
in the following list.

Solid Modeling The ability to define solid models as collections of surfaces and combine
them using the set operations intersection, union and difference. (See the section on
Solids and Spatial Set Operations, p. 93.)

Level of Detail The ability to specify several definitions of the same model and have one
selected based on the estimated screen size of the model. (See the section on Detail,
p. 52.)

Motion Blur The ability to process moving primitives and antialias them in time. (See
Section 6, Motion.)
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Depth of Field The ability to simulate focusing at different depths. (See the section on
Camera, p. 20.)

Special Camera Projections The ability to perform nonstandard camera projections such
as spherical or Omnimax projections. (See the section on Camera, p. 20.)

Displacements The ability to handle displacements. (See the section on Transformations,
p. 56.)

Spectral Colors The ability to calculate colors with an arbitrary number of spectral color
samples. (See the section on Additional Options, p. 35.)

Volume Shading The ability to attach and evaluate volumetric shading procedures. (See
the section on Volume shading, p. 47.)

Ray Tracing The ability to evaluate global illumination models using ray tracing. (See the
section on Shading and Lighting Functions, p. 143.)

Global Illumination The ability to evaluate indirect illumination models using radiosity
or other global illumination techniques. (See the section on Illuminance and Illuminate
Statements, p. 129.)

Area Light Sources The ability to illuminate surfaces with area light sources. (See the sec-
tion on Light Sources, p. 42.)

1.2 Structure of this Document

Part I of this document describes the scene description interface. Section 2 describes the
language binding and conventions used in this document. Section 3 provides a brief in-
troduction to the RenderMan Shading Language and its relationship to the RenderMan
Interface. Section 4 describes the graphics state maintained by the interface. The state is
divided into options which control the overall rendering process, and attributes which de-
scribe the properties of individual geometric primitives. Rendering options include camera
and display options as well as the type of hidden surface algorithm being used. Render-
ing attributes include shading (light sources, surface shading functions, colors, etc.) and
geometric attributes including transformations. Section 5 describes the basic geometric
surfaces and solid modeling representations used by the RenderMan Interface. Section 6
describes the specification of moving geometry and time-varying shading parameters. Fi-
nally, Section 7 describes the process of generating texture maps from standard image files,
reporting errors, and manipulating archive files.
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Section 2

LANGUAGE BINDING SUMMARY

In this document, the RenderMan Interface is described in the ANSI C language. Other
language bindings may be proposed in the future.

2.1 C Binding

All types, procedures, tokens, predefined variables and utility procedures mentioned in
this document are required to be present in all C implementations that conform to this
specification. The C header file which declares all of these required names, ri.h, is listed in
Appendix C, Language Binding Details.

The RenderMan Interface requires the following types:

typedef short RtBoolean ;
typedef int RtInt ;
typedef float RtFloat ;
typedef char *RtToken ;

typedef RtFloat RtColor [3];
typedef RtFloat RtPoint [3];
typedef RtFloat RtVector [3];
typedef RtFloat RtNormal [3];
typedef RtFloat RtHpoint [4];
typedef RtFloat RtMatrix [4][4];
typedef RtFloat RtBasis [4][4];
typedef RtFloat RtBound [6];
typedef char *RtString ;

typedef void *RtPointer ;
typedef void RtVoid ;

typedef RtFloat (RtFilterFunc )(RtFloat , RtFloat , RtFloat , RtFloat );
typedef RtFloat (RtErrorHandler )(RtInt , RtInt , char *);
typedef RtFloat (RtProcSubdivFunc )(RtPointer , RtFloat );
typedef RtFloat (RtProcFreeFunc )(RtPointer );
typedef RtFloat (RtArchiveCallback )(RtToken , char *, ...);

typedef RtPointer RtObjectHandle ;
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typedef RtPointer RtLightHandle ;
typedef RtPointer RtContextHandle ;

All procedures and values defined in the interface are prefixed with Ri (for RenderMan
Interface). All types are prefixed with Rt (for RenderMan type). Boolean values are either
RI FALSE or RI TRUE. Special floating point values RI INFINITY and RI EPSILON are de-
fined. The expression−RI INFINITY has the obvious meaning. The number of components
in a color is initially three, but can be changed (See the section Additional options, p. 33). A
bound is a bounding box and is specified by 6 floating point values in the order xmin, xmax,
ymin, ymax, zmin, zmax. A matrix is an array of 16 numbers describing a 4 by 4 transfor-
mation matrix. All multidimensional arrays are specified in row-major order, and points
are assumed to be represented as row vectors, not column vectors. For example, a 4 by 4
translation matrix to the location (2,3,4) is specified with

{ { 1.0, 0.0, 0.0, 0.0},
{ 0.0, 1.0, 0.0, 0.0},
{ 0.0, 0.0, 1.0, 0.0},
{ 2.0, 3.0, 4.0, 1.0} }

Tokens are strings that have a special meaning to procedures implementing the interface.
These meanings are described with each procedure. The capabilities of the RenderMan In-
terface can be extended by defining new tokens and passing them to various procedures.
The most important of these are the tokens identifying variables defined by procedures
called shaders, written in the Shading Language. Variables passed through the Render-
Man Interface are bound by name to shader variables. To make the standard predeclared
tokens and user-defined tokens similar, RenderMan Interface tokens are represented by
strings. Associated with each of the standard predefined tokens, however, is a predefined
string constant that the RenderMan Interface procedures can use for efficient parsing. The
names of these string constants are derived from the token names used in this document
by prepending an RI to a capitalized version of the string. For example, the predefined
constant token for ”rgb” is RI RGB. The special predefined token RI NULL is used to specify
a null token.

In the C binding presented in this document, parameters are passed by value or by refer-
ence. C implementations of the RenderMan Interface are expected to make copies of any
parameters whose values are to be retained across procedure invocations.

Many procedures in the RenderMan Interface have variable length parameter lists. These
are indicated by the syntactical construct ...parameterlist... in the procedure’s argument list.
In the C binding described, a parameterlist is a sequence of pairs of arguments, the first being
an RtToken and the second being an RtPointer , an untyped pointer to an array of either
RtFloat , RtString or other values. The list is terminated by the special token RI NULL.

In addition, each such procedure has an alternate vector interface, which passes the parameterlist
as three arguments: an RtInt indicating the length of the parameter list; an array of that
length that contains the RtToken s; and another array of the same length that contains the
RtPointer s. This alternate procedure is denoted by appending an uppercase V to the pro-
cedure name.

For example the procedure RiFoo declared as
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RiFoo ( ...parameterlist... )

could be called in the following ways:

RtColor colors;
RtPoint points;
RtFloat one float;
RtToken tokens[3];
RtPointer values[3];
RiFoo ( RI NULL);
RiFoo ((RtToken )”P”, (RtPointer )points, (RtToken )”Cs”, (RtPointer )colors,

(RtToken )”Kd”, (RtPointer )&one float, RI NULL);

RiFoo (RI P, (RtPointer )points, RI CS, (RtPointer )colors,
RI KD, (RtPointer )&one float, RI NULL);

tokens[0] = RI P; values[0] = (RtPointer )points;
tokens[1] = RI CS; values[1] = (RtPointer )colors;
tokens[2] = RI KD; values[2] = (RtPointer )&one float;
RiFooV ( 3, tokens, values);

It is not the intent of this document to propose that other language bindings use an identical
mechanism for passing parameter lists. For example, a Fortran or Pascal binding might
pass parameters using four arguments: an integer indicating the length of the parameter
list, an array of that length that contains the tokens, an array of the same length containing
integer indices into the final array containing the real values. A Common Lisp binding
would be particularly simple because it has intrinsic support for variable length argument
lists.

There may be more than one rendering context. This would allow a program to, for example,
output to mutiple RIB files. RenderMan Interface procedure calls apply to the currently
active context. At any one time, there is at most one globally active rendering context. The
RenderMan Interface is not intended to be reentrant. In other words, the active context is
truly global to a program process, and there cannot be have multiple simultaneous threads
in one process, each with a different active context. Following is an example of writing
to multiple contexts, in which a sphere is written to one RIB file and a cylinder is written
to a different RIB file (the semantics of the context switching routines are presented in
Section 4).

RtContextHandle ctx1, ctx2;
RiBegin (”file1.rib”);
ctx1 = RiGetContext ( );
RiBegin (”file2.rib”);
ctx2 = RiGetContext ( );
...
RiContext (ctx1);
RiSphere (1, -1, 1, 360, RI NULL);
RiContext (ctx2);
RiCylinder (1, -1, 1, 360, RI NULL);
RiEnd ( ); /* Ends context 2 */
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RiContext (ctx1);
...

There is no RIB equivalent for context switching. Additionally, other language bindings
may have no need for these routines, or may provide an obvious mechanism in the lan-
guage for this facility (such as class instances and methods in C++).

2.2 Bytestream Protocol

This document also describes a byte stream representation of the RenderMan Interface,
known as the RenderMan Interface Bytestream, or RIB. This byte stream serves as both
a network transport protocol for modeling system clients to communicate requests to a
remote rendering service, and an archive file format to save requests for later submission
to a renderer.

The RIB protocol provides both an ASCII and binary encoding of each request, in order to
satisfy needs for both an understandable (potentially) interactive interface to a rendering
server and a compact encoded format which minimizes transmission time and file storage
costs. Some requests have multiple versions, for efficiency or to denote special cases of the
request.

The semantics of each RIB request are identical to the corresponding C entry point, except
as specifically noted in the text. In Part I of this document, each RIB request is presented in
its ASCII encoding, using the following format:

RIB BINDING

Request parameter1 parameter2... parameterN

Explanation of the special semantics of the RIB protocol for this request.

At the top of the description, parameter1 through parameterN are the parameters that the re-
quest requires. The notation ‘–’ in the parameter position indicates that the request expects
no parameters. Normally the parameter names suggest their purpose, e.g., x, y, or angle.

In RIB, square brackets ([ and ]) delimit arrays. Integers will be automatically promoted if
supplied for parameters which require floating point values. A parameter list is simply a
sequence of string-array pairs. There is no explicit termination symbol as in the C binding.
Example parameter lists are:

”P” [0 1 2 3 4 5 6 7 8 9 10 11]
”distance” [.5] ”roughness” [1.2]

The details of the lexical syntax of both the ASCII and binary encodings of the RIB protocol
are presented in Appendix C, Language Binding Details.
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2.3 Additional Information

Finally, the description of each RenderMan Interface request provides an example and
cross-reference in the following format:

EXAMPLE

Request 7 22.9

SEE ALSO

RiOtherRequest

Some examples are presented in C, others in RIB, and a few are presented in both bindings
(for comparison). It should be obvious from the syntax which binding is which.
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Section 3

RELATIONSHIP TO THE RENDERMAN SHADING
LANGUAGE

The capabilities of the RenderMan Interface can be extended by using the Shading Lan-
guage. The Shading Language is described in Part II of this document. This section de-
scribes the interaction between the RenderMan Interface and the Shading Language.

Special procedures, called shaders, are declared in this language. The argument list of a
shader declares variables that can be passed through the RenderMan Interface to a shader.
For example, in the shading language a shader called weird might be declared as follows:

surface
weird ( float f = 1.0; point p = (0,0,0) )
{

Cs = Ci * mod ( length(P-p)*f - s + t, 1.0 );
}

The shader weird is referred to by name and so are its variables.

RtFloat foo;
RtPoint bar;

RiSurface (”weird”, ”f”, (RtPointer )&foo, ”p”, (RtPointer )&bar, RI NULL);

passes the value of foo to the Shading Language variable f and the value bar to the variable
p. Note that since all parameters are passed as arrays, the single float must be passed by
reference.

In order to pass shading language variables, the RenderMan Interface must know the type
of each variable defined in a shader. All predefined shaders predeclare the types of the
variables that they use. Certain other variables, such as position, are also predeclared.
Additional variables are declared with:

RtToken
RiDeclare (char *name, char *declaration)
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Declare the name and type of a variable. The declaration indicates the size and se-
mantics of values associated with the variable, or may be RI NULL if there are no
associated values. This information is used by the renderer in processing the variable
argument list semantics of the RenderMan Interface. The syntax of declaration is:

[class] [type] [ ‘[’ n ‘]’ ]

where class may be constant, uniform, varying (as in the shading language), or vertex
(position data, such as bicubic control points), and type may be one of: float, integer,
string, color, point, vector, normal, matrix, and hpoint. Most of these types are described
in Section 11, Types, which describes the data types available in the Shading Lan-
guage. The Shading Language does not have an integer type, but integers may be
passed through the interface as arguments to options or attributes. Additionally, the
hpoint is used to describe 4D homogeneous coordinates (for example, used to de-
scribe NURBS control points). Any hpoint values are converted to ordinary points by
dividing by the homogeneous coordinate just before passing the value to the shader.

The optional bracket notation indicates an array of n type items, where n is a positive
integer. If no array is specified, one item is assumed. If a class is not specified, the
identifier is assumed to be uniform.

RiDeclare also installs name into the set of known tokens and returns a constant
token which can be used to indicate that variable. This constant token will gener-
ally have the same efficient parsing properties as the ‘RI ’ versions of the predefined
tokens.

RIB BINDING

Declare name declaration

EXAMPLE

RiDeclare ( ”Np”, ”uniform point” );
RiDeclare ( ”Cs”, ”varying color” );

Declare ”st” ”varying float[2]”

In addition to using RiDeclare to globally declare the type of a variable, the type and
storage class of a variable may be declared “in-line.” For example:

RiSurface ( ”mysurf”, ”uniform point center”, &center, RI NULL );
RiPolygon ( 4, RI P, &points, ”varying float temperature”, &temps, RI NULL );

Patch ”bilinear” ”P” [...] ”vertex point Pref” [...] ”varying float[2] st” [...]

When using these in-line declarations, the storage class and data type prepend the token
name. Thus, any RenderMan Interface routines or RIB directives that take user-specified
data will examine the tokens, treating multi-word tokens that start with class and type
names as an in-line declaration. The scope of an in-line declaration is just one data item —
in other words, it does not alter the global dictionary or affect any other data transmitted
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through the interface. Any place where user data is used and would normally require a
preceeding RiDeclare , it is also legal to use an in-line declaration.

The storage modifiers vertex, varying, uniform, and constant are discussed in the section on
Uniform and Varying Variables in Part II and in Section 5, Geometric Primitives. All proce-
dure parameter tokens and shader variable name tokens named in this document are stan-
dard and are predefined by all implementations of the RenderMan Interface. In addition,
a particular implementation may predeclare other variables for use with implementation-
specific options, geometry, etc.

Whenever a point, vector, normal, matrix, or hpoint variable is passed through the Render-
Man Interface to shaders, the values are assumed to be relative to the current coordinate
system. This is sometimes referred to as object coordinates. Different coordinate systems
are discussed in the Camera section.

Whenever colors are passed through the RenderMan Interface, they are expected to have
a number of floats equal to the number of color samples being used by the interface. This
defaults to 3, but can be changed by the user (see the section on Additional options).
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Section 4

GRAPHICS STATE

The RenderMan Interface is similar to other graphics packages in that it maintains a graph-
ics state. The graphics state contains all the information needed to render a geometric
primitive. RenderMan Interface commands either change the graphics state or render a
geometric primitive. The graphics state is divided into two parts: a global state that re-
mains constant while rendering a single image or frame of a sequence, and a current state
that changes from geometric primitive to geometric primitive. Parameters in the global
state are referred to as options, whereas parameters in the current state are referred to as
attributes. Options include the camera and display parameters, and other parameters that
affect the quality or type of rendering in general (e.g., global level of detail, number of color
samples, etc.). Attributes include the parameters controlling appearance or shading (e.g.,
color, opacity, surface shading model, light sources, etc.), how geometry is interpreted (e.g.,
orientation, subdivision level, bounding box, etc.), and the current modeling matrix. To aid
in specifying hierarchical models, the attributes in the graphics state may be pushed and
popped on a graphics state stack.

The graphics state also maintains the interface mode. The different modes of the interface
are entered and exited by matching Begin-End command sequences.

RiBegin ( RtToken name )

RiEnd ( void )

RiBegin creates and initializes a new rendering context, setting all graphics state
variables to their default values, and makes the new context the active one to which
subsequent Ri routines will apply. Any previously active rendering context still ex-
ists, but is no longer the active one. The name may be the name of a renderer, to select
among various implementations that may be available, or the name of the file to write
(in the case of a RIB generator). RI NULL indicates that the default implementation
and/or output file should be used.

RiEnd terminates the active rendering context, including performing any cleanup
operations that need to be done. After RiEnd is called, there is no active rendering
context until another RiBegin or RiContext is called.

All other RenderMan Interface procedures must be called within an active context
(the only exceptions are RiErrorHandler , RiOption , and RiContext ).
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RtContextHandle RiGetContext ( void )

RiContext ( RtContextHandle handle )

RiGetContext returns a handle for the current active rendering context. If there is no
active rendering context, RI NULL will be returned. RiContext sets the current active
rendering context to be the one pointed to by handle. Any previously active context
is not destroyed.

There is no RIB equivalent for these routines. Additionally, other language bindings
may have no need for these routines, or may provide an obvious mechanism in the
language for this facility (such as class instances and methods in C++).

RiFrameBegin ( RtInt frame )

RiFrameEnd ( void )

The bracketed set of commands RiFrameBegin -RiFrameEnd mark the beginning
and end of a single frame of an animated sequence. frame is the number of this
frame. The values of all of the rendering options are saved when RiFrameBegin is
called, and these values are restored when RiFrameEnd is called.

All lights and retained objects defined inside the RiFrameBegin -RiFrameEnd frame
block are removed and their storage reclaimed when RiFrameEnd is called (thus
invalidating their handles).

All of the information that changes from frame to frame should be inside a frame
block. In this way, all of the information that is necessary to produce a single frame
of an animated sequence may be extracted from a command stream by retaining only
those commands within the appropriate frame block and any commands outside all
of the frame blocks. This command need not be used if the application is producing
a single image.

RIB BINDING

FrameBegin int
FrameEnd -

EXAMPLE

RiFrameBegin (14);

SEE ALSO

RiWorldBegin

RiWorldBegin ()

RiWorldEnd ()
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When RiWorldBegin is invoked, all rendering options are frozen and cannot be
changed until the picture is finished. The world-to-camera transformation is set to the
current transformation and the current transformation is reinitialized to the identity. In-
side an RiWorldBegin -RiWorldEnd block, the current transformation is interpreted to
be the object-to-world transformation. After an RiWorldBegin , the interface can accept
geometric primitives that define the scene. (The only other mode in which geomet-
ric primitives may be defined is inside a RiObjectBegin -RiObjectEnd block.) Some
rendering programs may immediately begin rendering geometric primitives as they
are defined, whereas other rendering programs may wait until the entire scene has
been defined.

RiWorldEnd does not normally return until the rendering program has completed
drawing the image. If the image is to be saved in a file, this is done automatically by
RiWorldEnd .

All lights and retained objects defined inside the RiWorldBegin -RiWorldEnd world
block are removed and their storage reclaimed when RiWorldEnd is called (thus in-
validating their handles).

RIB BINDING

WorldBegin -
WorldEnd -

EXAMPLE

RiWorldEnd ();

SEE ALSO

RiFrameBegin

The following is an example of the use of these procedures, showing how an application
constructing an animation might be structured. In the example, an object is defined once
and instanced in subsequent frames at different positions.

RtObjectHandle BigUglyObject;

RiBegin ();
BigUglyObject = RiObjectBegin ();
...
RiObjectEnd ();
/* Display commands */
RiDisplay (...):
RiFormat (...);
RiFrameAspectRatio (1.0);
RiScreenWindow (...);

RiFrameBegin (0);
/* Camera commands */
RiProjection (RI PERSPECTIVE,...);
RiRotate (...);
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RiWorldBegin ();
...
RiColor (...);
RiTranslate (...);
RiObjectInstance ( BigUglyObject );
...

RiWorldEnd ();
RiFrameEnd ();

RiFrameBegin (1);
/* Camera commands */
RiProjection (RI PERSPECTIVE,...);
RiRotate (...);
RiWorldBegin ();

...
RiColor (...);
RiTranslate (...);
RiObjectInstance ( BigUglyObject );
...

RiWorldEnd ();
RiFrameEnd ();
...

RiEnd ();

The following begin-end pairs also place the interface into special modes.

RiSolidBegin ()
RiSolidEnd ()

RiMotionBegin ()
RiMotionEnd ()

RiObjectBegin ()
RiObjectEnd ()

The properties of these modes are described in the appropriate sections (see the sections
on Solids and Spatial Set Operations, p. 93; Motion, p. 97; and Retained Geometry, p. 95).

Two other begin-end pairs:

RiAttributeBegin ()
RiAttributeEnd ()

RiTransformBegin ()
RiTransformEnd ()

save and restore the attributes in the graphics state, and save and restore the current trans-
formation, respectively.

All begin-end pairs (except RiTransformBegin -RiTransformEnd and RiMotionBegin - Ri-
MotionEnd ), implicitly save and restore attributes. Begin-end blocks of the various types
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may be nested to any depth, subject to their individual restrictions, but it is never legal for
the blocks to overlap.

4.1 Options

The graphics state has various options that must be set before rendering a frame. The com-
plete set of options includes: a description of the camera, which controls all aspects of the
imaging process (including the camera position and the type of projection); a description of
the display, which controls the output of pixels (including the types of images desired, how
they are quantized and which device they are displayed on); as well as renderer run-time
controls (such as the hidden surface algorithm to use).

4.1.1 Camera

The graphics state contains a set of parameters that define the properties of the camera.
The complete set of camera options is described in Table 4.1, Camera Options.

The viewing transformation specifies the coordinate transformations involved with imag-
ing the scene onto an image plane and sampling that image at integer locations to form a
raster of pixel values. A few of these procedures set display parameters such as resolution
and pixel aspect ratio. If the rendering program is designed to output to a particular display
device these parameters are initialized in advance. Explicitly setting these makes the spec-
ification of an image more device dependent and should only be used if necessary. The
defaults given in the Camera Options table characterize a hypothetical framebuffer and are
the defaults for picture files.

The camera model supports near and far clipping planes that are perpendicular to the
viewing direction, as well as any number of arbitrary user-specified clipping planes. Depth
of field is specified by setting an f-stop, focal length, and focal distance just as in a real
camera. Objects located at the focal distance will be sharp and in focus while other objects
will be out of focus. The shutter is specified by giving opening and closing times. Moving
objects will blur while the camera shutter is open.

The imaging transformation proceeds in several stages. Geometric primitives are specified
in the object coordinate system. This canonical coordinate system is the one in which the
object is most naturally described. The object coordinates are converted to the world co-
ordinate system by a sequence of modeling transformations. The world coordinate system is
converted to the camera coordinate system by the camera transformation. Once in camera
coordinates, points are projected onto the image plane or screen coordinate system by the
projection and its following screen transformation. Points on the screen are finally mapped
to a device dependent, integer coordinate system in which the image is sampled. This
is referred to as the raster coordinate system and this transformation is referred to as the
raster transformation. These various coordinate systems are summarized in Table 4.2 Point
Coordinate Systems.

These various coordinate systems are established by camera and transformation commands.
The order in which camera parameters are set is the opposite of the order in which the
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Camera Option Type Default Description
Horizontal Resolution integer 640* The horizontal resolution in the

output image.
Vertical Resolution integer 480* The vertical resolution in the

output image.
Pixel Aspect Ratio float 1.0* The ratio of the width to the

height of a single pixel.
Crop Window 4 floats (0,1,0,1) The region of the raster that is

actually rendered.
Frame Aspect Ratio float 4/3* The aspect ratio of the desired

image.
Screen Window 4 floats (-4/3,4/3,-1,1)* The screen coordinates (coordi-

nates after the projection) of the
area to be rendered.

Camera Projection token “orthographic” The camera to screen projec-
tion.

World to Camera transform identity The world to camera transfor-
mation.

Near and Far Clipping 2 floats (epsilon,infinity) The positions of the near and
far clipping planes.

Other Clipping Planes list of planes – Additional planes that clip
geometry from the scene.

f-Stop float infinity Parameters controlling depth
of field.

Focal Length float –
Focal Distance float –
Shutter Open float 0 The times when the shutter

opens and closes.
Shutter Close float 0

* Interrelated defaults

Table 4.1: Camera Options
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Coordiante System Description
”object” The coordinate system in which the current geometric primitive is

defined. The modeling transformation converts from object coor-
dinates to world coordinates.

”world” The standard reference coordinate system. The camera transfor-
mation converts from world coordinates to camera coordinates.

”camera” A coordinate system with the vantage point at the origin and the
direction of view along the positive z-axis. The projection and
screen transformation convert from camera coordinates to screen
coordinates.

”screen” The 2-D normalized coordinate system corresponding to the im-
age plane. The raster transformation converts to raster coordi-
nates.

”raster” The raster or pixel coordinate system. An area of 1 in this coordi-
nate system corresponds to the area of a single pixel. This coordi-
nate system is either inherited from the display or set by selecting
the resolution of the image desired.

”NDC” Normalized device coordinates — like ”raster” space, but normal-
ized so that x and y both run from 0 to 1 across the whole (un-
cropped) image, with (0,0) being at the upper left of the image,
and (1,1) being at the lower right (regardless of the actual aspect
ratio).

Table 4.2: Point Coordinate Systems

imaging process was described above. When RiBegin is executed it establishes a complete
set of defaults. If the rendering program is designed to produce pictures for a particular
piece of hardware, display parameters associated with that piece of hardware are used. If
the rendering program is designed to produce picture files, the parameters are set to gen-
erate a video-size image. If these are not sufficient, the resolution and pixel aspect ratio
can be set to generate a picture for any display device. RiBegin also establishes default
screen and camera coordinate systems as well. The default projection is orthographic and
the screen coordinates assigned to the display are roughly between ±1.0. The initial cam-
era coordinate system is mapped onto the display such that the +x axis points right, the +y
axis points up, and the +z axis points inward, perpendicular to the display surface. Note
that this is left-handed.

Before any transformation commands are made, the current transformation matrix contains
the identity matrix as the screen transformation. Usually the first transformation command
is an RiProjection , which appends the projection matrix onto the screen transformation,
saves it, and reinitializes the current transformation matrix as the identity camera transforma-
tion. This marks the current coordinate system as the camera coordinate system. After the
camera coordinate system is established, future transformations move the world coordi-
nate system relative to the camera coordinate system. When an RiWorldBegin is executed,
the current transformation matrix is saved as the camera transformation, and thus the world
coordinate system is established. Subsequent transformations inside of an RiWorldBegin -
RiWorldEnd establish different object coordinate systems.

22



xresolution

xresolution * pixel-a.r.

frame-a.r.

yresolution

X

Y

Crop Window

Output im
age resolution

Display maximum resolution

Display device

(Raster coordinates)

X

Y

Image plane

(Screen coordinates)

left

right

top

bottom

Screen Window

X

Y

Z

Camera

coordinates

Perspective Viewing

Frustum (Pyramid)

Screen-to-Raster

Mapping

Figure 4.1: Camera-to-Raster Projection Geometry

The following example shows how to position a camera:

RiBegin ();
RiFormat ( xres, yres, 1.0 ); /* Raster coordinate system */
RiFrameAspectRatio ( 4.0/3.0 ); /* Screen coordinate system */
RiFrameBegin (0);

RiProjection (”perspective,”...); /* Camera coordinate system */
RiRotate (... );
RiWorldBegin (); /* World coordinate system */

...
RiTransform (...); /* Object coordinate system */

RiWorldEnd ();
RiFrameEnd ();
RiEnd ();

The various camera procedures are described below, with some of the concepts illustrated
in Figure 4.1, Camera-to-Raster Projection Geometry.

23



RiFormat (RtInt xresolution, RtInt yresolution, RtFloat pixelaspectratio)

Set the horizontal (xresolution) and vertical (yresolution) resolution (in pixels) of the
image to be rendered. The upper left hand corner of the image has coordinates (0,0)
and the lower right hand corner of the image has coordinates (xresolution, yreso-
lution). If the resolution is greater than the maximum resolution of the device, the
desired image is clipped to the device boundaries (rather than being shrunk to fit
inside the device). This command also sets the pixel aspect ratio. The pixel aspect
ratio is the ratio of the physical width to the height of a single pixel. The pixel aspect
ratio should normally be set to 1 unless a picture is being computed specifically for a
display device with non-square pixels.

Implicit in this command is the creation of a display viewport with a

viewportaspectratio =
xresolution · pixelaspectratio

yresolution

The viewport aspect ratio is the ratio of the physical width to the height of the entire
image.

An image of the desired aspect ratio can be specified in a device independent way us-
ing the procedure RiFrameAspectRatio described below. The RiFormat command
should only be used when an image of a specified resolution is needed or an image
file is being created.

If this command is not given, the resolution defaults to that of the display device
being used (see the Displays section, p. 27). Also, if xresolution, yresolution or pix-
elaspectratio is specified as a nonpositive value, the resolution defaults to that of the
display device for that particular parameter.

RIB BINDING

Format xresolution yresolution pixelaspectratio

EXAMPLE

Format 512 512 1

SEE ALSO

RiDisplay , RiFrameAspectRatio

RiFrameAspectRatio ( RtFloat frameaspectratio )

frameaspectratio is the ratio of the width to the height of the desired image. The
picture produced is adjusted in size so that it fits into the display area specified with
RiDisplay or RiFormat with the specified frame aspect ratio and is such that the
upper left corner is aligned with the upper left corner of the display.

If this procedure is not called, the frame aspect ratio defaults to that determined from
the resolution and pixel aspect ratio.

RIB BINDING

FrameAspectRatio frameaspectratio
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EXAMPLE

RiFrameAspectRatio (4.0/3.0);

SEE ALSO

RiDisplay , RiFormat

RiScreenWindow ( RtFloat left, RtFloat right, RtFloat bottom, RtFloat top )

This procedure defines a rectangle in the image plane that gets mapped to the raster
coordinate system and that corresponds to the display area selected. The rectangle
specified is in the screen coordinate system. The values left , right , bottom, and top are
mapped to the respective edges of the display.

The default values for the screen window coordinates are:

(–frameaspectratio, frameaspectratio, –1, 1).

if frameaspectratio is greater than or equal to one, or

(–1, 1, –1/frameaspectratio, 1/frameaspectratio).

if frameaspectratio is less than or equal to one. For perspective projections, this de-
fault gives a centered image with the smaller of the horizontal and vertical fields of
view equal to the field of view specified with RiProjection . Note that if the camera
transformation preserves relative x and y distances, and if the ratio

abs(right − left)
abs(top − bottom)

is not the same as the frame aspect ratio of the display area, the displayed image will
be distorted.

RIB BINDING

ScreenWindow left right bottom top
ScreenWindow [left right bottom top]

EXAMPLE

ScreenWindow -1 1 -1 1

SEE ALSO

RiCropWindow , RiFormat , RiFrameAspectRatio , RiProjection

RiCropWindow ( RtFloat xmin, RtFloat xmax, RtFloat ymin, RtFloat ymax )

Render only a subrectangle of the image. This command does not affect the mapping
from screen to raster coordinates. This command is used to facilitate debugging re-
gions of an image, and to help in generating panels of a larger image. These values
are specified as fractions of the raster window defined by RiFormat and RiFrameA-
spectRatio , and therefore lie between 0 and 1. By default the entire raster window is
rendered. The integer image locations corresponding to these limits are given by
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rxmin = clamp (ceil ( xresolution*xmin ), 0, xresolution-1);
rxmax = clamp (ceil ( xresolution*xmax -1 ), 0, xresolution-1);
rymin = clamp (ceil ( yresolution*ymin ), 0, yresolution-1);
rymax = clamp (ceil ( yresolution*ymax -1 ), 0, yresolution-1);

These regions are defined so that if a large image is generated with tiles of abutting
but non-overlapping crop windows, the subimages produced will tile the display
with abutting and non-overlapping regions.

RIB BINDING

Cropwindow xmin xmax ymin ymax
Cropwindow [xmin xmax ymin ymax ]

EXAMPLE

RiCropWindow (0.0, 0.3, 0.0, 0.5);

SEE ALSO

RiFrameAspectRatio , RiFormat

RiProjection ( RtToken name, ...parameterlist...)

The projection determines how camera coordinates are converted to screen coordi-
nates, using the type of projection and the near/far clipping planes to generate a
projection matrix. It appends this projection matrix to the current transformation ma-
trix and stores this as the screen transformation, then marks the current coordinate
system as the camera coordinate system and reinitializes the current transformation
matrix to the identity camera transformation. The required types of projection are
”perspective”, ”orthographic”, and RI NULL.

”perspective” builds a projection matrix that does a perspective projection along the
z-axis, using the RiClipping values, so that points on the near clipping plane project
to z = 0 and points on the far clipping plane project to z = 1. ”perspective” takes one
optional parameter, ”fov”, a single RtFloat that indicates he full angle perspective field
of view (in degrees) between screen space coordinates (-1,0) and (1,0) (equivalently
between (0,-1) and (0,1)). The default is 90 degrees.

Note that there is a redundancy in the focal length implied by this procedure and the
one set by RiDepthOfField . The focal length implied by this command is:

focallength =
horizontalscreenwidth

verticalscreenwidth
/ tan

(
fov
2

)
”orthographic” builds a simple orthographic projection that scales z using the RiClip-
ping values as above. ”orthographic” takes no parameters.

RI NULL uses an identity projection matrix, and simply marks camera space in situa-
tions where the user has generated his own projection matrices himself using RiPer-
spective or RiTransform .

This command can also be used to select implementation-specific projections or spe-
cial projections written in the Shading Language. If a particular implementation does
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not support the special projection specified, it is ignored and an orthographic projec-
tion is used. If RiProjection is not called, the screen transformation defaults to the
identity matrix, so screen space and camera space are identical.

RIB BINDING

Projection ”perspective” ...parameterlist...
Projection ”orthographic”
Projection name ...parameterlist...

EXAMPLE

RiProjection (RI ORTHOGRAPHIC, RI NULL);

RtFloat fov = 45.0;
RiProjection (RI PERSPECTIVE, ”fov”, &fov, RI NULL);

SEE ALSO

RiPerspective , RiClipping

RiClipping ( RtFloat near, RtFloat far )

Sets the position of the near and far clipping planes along the direction of view.
near and far must both be positive numbers. near must be greater than or equal
to RI EPSILON and less than far . far must be greater than near and may be equal to
RI INFINITY. These values are used by RiProjection to generate a screen projection
such that depth values are scaled to equal zero at z=near and one at z=far . Notice
that the rendering system will actually clip geometry which lies outside of z=(0,1)
in the screen coordinate system, so non-identity screen transforms may affect which
objects are actually clipped.

For reasons of efficiency, it is generally a good idea to bound the scene tightly with
the near and far clipping planes.

RIB BINDING

Clipping near far

EXAMPLE

Clipping 0.1 10000

SEE ALSO

RiBound , RiProjection , RiClippingPlane

RiClippingPlane ( RtFloat x, RtFloat y, RtFloat z, RtFloat nx, RtFloat ny, RtFloat nz)

Adds a user-specified clipping plane. The plane is specified by giving any point on
its surface, (x, y, z), and the plane normal, (nx, ny, nz). All geometry on the positive
side of the plane (that is, in the direction that the normal points) will be clipped from
the scene. The point and normal parameters are interpreted as being in the active
local coordinate system at the time that the RiClippingPlane statement is issued.
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Multiple calls to RiClippingPlane will establish multiple clipping planes.

RIB BINDING

ClippingPlane x y z nx ny nz

EXAMPLE

ClippingPlane 3 0 0 0 0 -1

SEE ALSO

RiClipping

RiDepthOfField ( RtFloat fstop, RtFloat focallength, RtFloat focaldistance )

focaldistance sets the distance along the direction of view at which objects will be in
focus. focallength sets the focal length of the camera. These two parameters should
have the units of distance along the view direction in camera coordinates. fstop, or
aperture number, determines the lens diameter:

lensdiameter =
focallength

fstop

If fstop is RI INFINITY, a pin-hole camera is used and depth of field is effectively
turned off. If the Depth of Field capability is not supported by a particular implemen-
tation, a pin-hole camera model is always used.

If depth of field is turned on, points at a particular depth will not image to a single
point on the view plane but rather a circle. This circle is called the circle of confusion.
The diameter of this circle is equal to

C =
focallength

fstop
· focaldistance · focallength

focaldistance − focallength
·
∣∣∣∣ 1
depth

− 1
focaldistance

∣∣∣∣
Note that there is a redundancy in the focal length as specified in this procedure and
the one implied by RiProjection .

RIB BINDING

DepthOfField fstop focallength focaldistance
DepthOfField -

The second form specifies a pin-hole camera with infinite fstop, for which the focal-
length and focaldistance parameters are meaningless.

EXAMPLE

DepthOfField 22 45 1200

SEE ALSO

RiProjection

RiShutter ( RtFloat min, RtFloat max )

28



This procedure sets the times at which the shutter opens and closes. min should be
less than max . If min==max , no motion blur is done.

RIB BINDING

Shutter min max

EXAMPLE

RiShutter (0.1, 0.9);

SEE ALSO

RiMotionBegin

4.1.2 Displays

The graphics state contains a set of parameters that control the properties of the display
process. The complete set of display options is given in Table 4.3, Display Options.

Rendering programs must be able to produce color, coverage (alpha), and depth images,
and may optionally be able to produce “images” of arbitrary geometric or shader-computed
data. Display parameters control how the values in these images are converted into a dis-
playable form. Many times it is possible to use none of the procedures described in this
section. If this is done, the rendering process and the images it produces are described in a
completely device-independent way. If a rendering program is designed for a specific dis-
play, it has appropriate defaults for all display parameters. The defaults given in Table 4.3,
Display Options characterize a file to be displayed on a hypothetical video framebuffer.

The output process is different for color, alpha, and depth information. (See Figure 4.2,
Imaging Pipeline). The hidden-surface algorithm will produce a representation of the light
incident on the image plane. This color image is either continuous or sampled at a rate
that may be higher than the resolution of the final image. The minimum sampling rate can
be controlled directly, or can be indicated by the estimated variance of the pixel values.
These color values are filtered with a user-selectable filter and filterwidth, and sampled at
the pixel centers. The resulting color values are then multiplied by the gain and passed
through an inverse gamma function to simulate the exposure process. The resulting colors
are then passed to a quantizer which scales the values and optionally dithers them before
converting them to a fixed-point integer. It is also possible to interpose a programmable
imager (written in the Shading Language) between the exposure process and quantizer.
This imager can be used to perform special effects processing, to compensate for nonlin-
earities in the display media, and to convert to device dependent color spaces (such as
CMYK or pseudocolor).

Final output alpha is computed by multiplying the coverage of the pixel (i.e., the sub-
pixel area actually covered by a geometric primitive) by the average of the color opacity
components. If an alpha image is being output, the color values will be multiplied by this
alpha before being passed to the quantizer. Color and alpha use the same quantizer.
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Display Option Type Default Description
Pixel Variance float – Estimated variance of the com-

puted pixel value from the true
pixel value.

Sampling Rates 2 floats 2, 2 Effective sampling rate in the hor-
izontal and vertical directions.

Filter function RiGaussianFilter Type of filtering and the width of
Filter Widths 2 floats 2, 2 the filter in the horizontal and ver-

tical directions.
Exposure

gain float 1.0 Gain and gamma of the exposure
gamma float 1.0 process.

Imager shader ”null” A procedure defining an image or
pixel operator.

Color Quantizer Color and opacity quantization
one integer 255 parameters.
maximum integer 0
minimum integer 255
dither amplitude float 0.5

Depth Quantizer Depth quantization parameters.
one integer 0
maximum integer –
minimum integer –
dither amplitude float –

Display Type token * Whether the display is a frame-
buffer or a file.

Display Name string * Name of the display device or file.
Display Mode token * Image output type.

* Implementation-specific

Table 4.3: Display Options
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Output depth values are the camera-space z values. Depth values bypass all the above
steps except for the imager and quantization. The depth quantizer has an independent set
of parameters from those of the color quantizer.

RiPixelVariance ( RtFloat variation )

The color of a pixel computed by the rendering program is an estimate of the true
pixel value: the convolution of the continuous image with the filter specified by
RiPixelFilter . This routine sets the upper bound on the acceptable estimated vari-
ance of the pixel values from the true pixel values.

RIB BINDING

PixelVariance variation

EXAMPLE

RiPixelVariance (.01);

SEE ALSO

RiPixelFilter , RiPixelSamples

RiPixelSamples ( RtFloat xsamples, RtFloat ysamples )

Set the effective hider sampling rate in the horizontal and vertical directions. The
effective number of samples per pixel is xsamples*ysamples. If an analytic hidden
surface calculation is being done, the effective sampling rate is RI INFINITY. Sam-
pling rates less than 1 are clamped to 1.

RIB BINDING

PixelSamples xsamples ysamples

EXAMPLE

PixelSamples 2 2

SEE ALSO

RiPixelFilter , RiPixelVariance

RiPixelFilter ( RtFilterFunc filterfunc, RtFloat xwidth, RtFloat ywidth )

Antialiasing is performed by filtering the geometry (or supersampling) and then sam-
pling at pixel locations. The filterfunc controls the type of filter, while xwidth and
ywidth specify the width of the filter in pixels. A value of 1 indicates that the support
of the filter is one pixel. RenderMan supports nonrecursive, linear shift-invariant fil-
ters. The type of the filter is set by passing a reference to a function that returns a
filter kernel value; i.e.,

filterkernelvalue = (*filterfunc)( x, y, xwidth, ywidth );
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Figure 4.2: Imaging pipeline

(where (x,y) is the point at which the filter should be evaluated). The rendering
program only requests values in the ranges –xwidth/2 to xwidth/2 and –ywidth/2
to ywidth/2. The values returned need not be normalized.

The following standard filter functions are available:

RtFloat RiBoxFilter (RtFloat , RtFloat , RtFloat , RtFloat );
RtFloat RiTriangleFilter (RtFloat , RtFloat , RtFloat , RtFloat );
RtFloat RiCatmullRomFilter (RtFloat , RtFloat , RtFloat , RtFloat );
RtFloat RiGaussianFilter (RtFloat , RtFloat , RtFloat , RtFloat );
RtFloat RiSincFilter (RtFloat , RtFloat , RtFloat , RtFloat );
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A particular renderer implementation may also choose to provide additional built-in
filters. The standard filters are described in Appendix E.

A high-resolution picture is often computed in sections or panels. Each panel is a
subrectangle of the final image. It is important that separately computed panels join
together without a visible discontinuity or seam. If the filter width is greater than 1
pixel, the rendering program must compute samples outside the visible window to
properly filter before sampling.

RIB BINDING

PixelFilter type xwidth ywidth

The type is one of: ”box”, ”triangle”, ”catmull-rom” (cubic), ”sinc”, and ”gaussian”.

EXAMPLE

RiPixelFilter (RiGaussianFilter , 2.0, 1.0);
PixelFilter ”gaussian” 2 1

SEE ALSO

RiPixelSamples , RiPixelVariance

RiExposure ( RtFloat gain, RtFloat gamma )

This function controls the sensitivity and nonlinearity of the exposure process. Each
component of color is passed through the following function:

color = (color · gain)1/gamma

RIB BINDING

Exposure gain gamma

EXAMPLE

Exposure 1.5 2.3

SEE ALSO

RiImager

RiImager ( RtToken name, ...parameterlist...)

Select an imager function programmed in the Shading Language. name is the name
of an imager shader. If name is RI NULL, no imager shader is used.

RIB BINDING

Imager name ...parameterlist...

EXAMPLE

RiImager (”cmyk,” RI NULL);

SEE ALSO
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RiExposure

RiQuantize ( RtToken type, RtInt one, RtInt min, RtInt max, RtFloat ditheramplitude )

Set the quantization parameters for colors or depth. If type is ”rgba”, then color and
opacity quantization are set. If type is ”z”, then depth quantization is set. The value
one defines the mapping from floating-point values to fixed point values. If one is 0,
then quantization is not done and values are output as floating point numbers.

Dithering is performed by adding a random number to the floating-point values be-
fore they are rounded to the nearest integer. The added value is scaled to lie between
plus and minus the dither amplitude. If ditheramplitude is 0, dithering is turned off.

Quantized values are computed using the following formula:

value = round( one * value + ditheramplitude * random() );
value = clamp( value, min, max );

where random returns a random number between ±1.0, and clamp clips its first argu-
ment so that it lies between min and max.

By default color pixel values are dithered with an amplitude of 0.5 and quantization
is performed for an 8-bit display with a one of 255. Quantization and dithering and
not performed for depth values (by default).

RIB BINDING

Quantize type one min max ditheramplitude

EXAMPLE

RiQuantize (RI RGBA, 2048, -1024, 3071, 1.0);

SEE ALSO

RiDisplay , RiImager

RiDisplay ( RtToken name, RtToken type, RtToken mode, ...parameterlist...)

Choose a display by name and set the type of output being generated. name is ei-
ther the name of a picture file or the name of the framebuffer, depending on type.
The type of display is the display format, output device, or output driver. All im-
plementations must support the type names ”framebuffer” and ”file”, which indicate
that the renderer should select the default framebuffer or default file format, respec-
tively. Implementations may support any number of particular formats or devices
(for example, ”tiff” might indicate that a TIFF file should be written), and may allow
the supported formats to be user-extensible in an implementation-specific manner.

The mode indicates what data are to be output in this display stream. All renderers
must support any combination (string concatenation) of ”rgb” for color (usually red,
green and blue intensities unless there are more or less than 3 color samples; see the
next section, Additional options), ”a” for alpha, and ”z” for depth values, in that order.
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Renderers may additionally produce “images” consisting of arbitrary data, by using a
mode that is the name of a known geometric quantity or the name of a shader output
variable. Note also that multiple display channels can be specified, by prepending
the + character to the name. For example,

RiDisplay (”out.tif,” ”file,” ”rgba”, RI NULL);
RiDisplay (”+normal.tif,” ”file,” ”N”, RI NULL);

will produce a four-channel image consisting of the filtered color and alpha in out.tif,
and also a second three-channel image file normal.tif consisting of the surface normal
of the nearest surface behind each pixel. (This would, of course, only be useful if
RiQuantize were instructed to output floating point data or otherwise scale the data.)

Display options or device-dependent display modes or functions may be set using
the parameterlist . One such option is required: ”origin”, which takes an array of two
RtInt s, sets the x and y position of the upper left hand corner of the image in the
display’s coordinate system; by default the origin is set to (0,0). The default display
device is renderer implementation-specific.

RIB BINDING

Display name type mode ...parameterlist...

EXAMPLE

RtInt origin[2] = { 10, 10 };
RiDisplay (”pixar0”, ”framebuffer”, ”rgba”, ”origin”, (RtPointer )origin, RI NULL);

SEE ALSO

RiFormat , RiQuantize

4.1.3 Additional options

Option Type Default Description
Hider token ”hidden” The type of hidden surface algorithm that

is performed.
Color Samples integer 3 Number of color components in colors.

The default is 3 for RGB.
Relative Detail float 1.0 A multiplicative factor that can be used to

increase or decrease the effective level of
detail used to render an object.

Table 4.4: Additional Options

The hider type and parameters control the hidden-surface algorithm.

RiHider ( RtToken type, ...parameterlist...)
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The standard types are ”hidden” and ”null”. ”hidden”, which is the default, performs
standard hidden-surface computations. The hider ”null” performs no pixel computa-
tion and hence produces no output. Other implementation-specific hidden-surface
algorithms can also be selected using this routine; for example, an implementation
may choose to support type ”paint”, which might draw the objects in the order in
which they are defined.

RIB BINDING

Hider type ...parameterlist...

EXAMPLE

RiHider ”paint”

Rendering programs compute color values in some spectral color space. This implies that
multiplying two colors corresponds to interpreting one of the colors as a light and the
other as a filter and passing light through the filter. Adding two colors corresponds to
adding two lights. The default color space is NTSC-standard RGB; this color space has
three samples. Color values of 0 are interpreted as black (or transparent) and values of 1
are interpreted as white (or opaque), although values outside this range are allowed.

RiColorSamples ( RtInt n, RtFloat nRGB[], RtFloat RGBn[] )

This function controls the number of color components or samples to be used in spec-
ifying colors. By default, n is 3, which is appropriate for RGB color values. Setting
n to 1 forces the rendering program to use only a single color component. The array
nRGB is an n by 3 transformation matrix that is used to convert n component colors
to 3 component NTSC-standard RGB colors. This is needed if the rendering program
cannot handle multiple components. The array RGBn is a 3 by n transformation ma-
trix that is used to convert 3 component NTSC-standard RGB colors to n component
colors. This is mainly used for transforming constant colors specified as color triples
in the Shading Language to the representation being used by the RenderMan Inter-
face.

Calling this procedure effectively redefines the type RtColor to be

typedef RtFloat RtColor [n];

After a call to RiColorSamples , all subsequent color arguments are assumed to be
this size.

If the Spectral Color capability is not supported by a particular implementation, that
implementation will still accept multiple component colors, but will immediately
convert them to RGB color space and do all internal calculations with 3 component
colors.

RIB BINDING

ColorSamples nRGB RGBn

36



The number of color components, n, is derived from the lengths of the nRGB and
RGBn arrays, as described above.

EXAMPLE

ColorSamples [.3.3 .4] [1 1 1]
RtFloat frommonochr[] = {.3, .3, .4};
RtFloat tomonochr[] = {1., 1., 1.};
RiColorSamples (1, frommonochr, tomonochr);

SEE ALSO

RiColor , RiOpacity

The method of specifying and using level of detail is discussed in the section on Detail.

RiRelativeDetail ( RtFloat relativedetail )

The relative level of detail scales the results of all level of detail calculations. The level
of detail is used to select between different representations of an object. If relativede-
tail is greater than 1, the effective level of detail is increased, and a more detailed
representation of all objects will be drawn. If relativedetail is less than 1, the effective
level of detail is decreased, and a less detailed representation of all objects will be
drawn.

RIB BINDING

RelativeDetail relativedetail

EXAMPLE

RelativeDetail 0.6

SEE ALSO

RiDetail , RiDetailRange

4.1.4 Implementation-specific options

Rendering programs may have additional implementation-specific options that control pa-
rameters that affect either their performance or operation. These are all set by the following
procedure.

RiOption ( RtToken name, ...parameterlist...)
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Sets the named implementation-specific option. A rendering system may have cer-
tain options that must be set before the renderer is initialized. In this case, RiOption
may be called before RiBegin to set those options only.

Although RiOption is intended to allow implementation-specific options, there are a
number of options that we expect that nearly all implementations will need to sup-
port. It is intended that when identical functionality is required, that all implementa-
tions use the option names listed in Table 4.5.

RIB BINDING

Option name ...parameterlist...

EXAMPLE

Option ”limits” ”gridsize” [32] ”bucketsize” [12 12]

SEE ALSO

RiAttribute

Option name/param Type Default Description
”searchpath” ”archive” [s] string ”” List of directories to search for RIB

archives.
”searchpath” ”texture” [s] string ”” List of directories to search for tex-

ture files.
”searchpath” ”shader” [s] string ”” List of directories to search for

shaders.
”searchpath” ”procedural” [s] string ”” List of directories to search for

dynamically-loaded RiProcedu-
ral primitives.

”statistics” ”endofframe” [i] integer ”” If nonzero, print runtime statistics
when the frame is finished render-
ing.

Table 4.5: Typical implementation-specific options

4.2 Attributes

Attributes are parameters in the graphics state that may change while geometric primitives
are being defined. The complete set of standard attributes is described in two tables: Ta-
ble 4.6, Shading Attributes, and Table 4.11, Geometry Attributes.

Attributes can be explicitly saved and restored with the following commands. All begin-
end blocks implicitly do a save and restore.
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RiAttributeBegin ()

RiAttributeEnd ()

Push and pop the current set of attributes. Pushing attributes also pushes the current
transformation. Pushing and popping of attributes must be properly nested with
respect to various begin-end constructs.

RIB BINDING

AttributeBegin -
AttributeEnd -

EXAMPLE

RiAttributeBegin ();

SEE ALSO

RiFrameBegin , RiTransformBegin , RiWorldBegin

The process of shading is described is detail in Part II: The RenderMan Shading Language.
The complete list of attributes related to shading are in Table 4.6, Shading Attributes.

The graphics state maintains a list of attributes related to shading. Associated with the
shading state are a current color and a current opacity. The graphics state also contains a cur-
rent surface shader, a current atmosphere shader, a current interior volume shader, and a current
exterior volume shader.

All geometric primitives use the current surface shader for computing the color (shading) of
their surfaces and the current atmosphere shader for computing the attenuation of light to-
wards the viewer. Primitives may also attach the current interior and exterior volume shaders
to their interior and exterior, which is used to alter the colors of rays spawned by trace()
calls in the shaders bound to the primitives (in a renderer that supports this optional fea-
ture). The graphics state also contains a current list of light sources that are used to illuminate
the geometric primitive. Finally, there is a current area light source. Geometric primitives can
be added to a list of primitives defining this light source.

4.2.1 Color and opacity

All geometric primitives inherit the current color and opacity from the graphics state, un-
less color or opacity are defined as part of the primitive. Colors are passed in arrays that are
assumed to contain the number of color samples being used (see the section on Additional
options).

RiColor ( RtColor color )

Set the current color to color. Normally there are three components in the color (red,
green, and blue), but this may be changed with the colorsamples request.
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Shading Attribute Type Default Description
Color color color ”rgb” (1,1,1) The reflective color of the

object.
Opacity color color ”rgb” (1,1,1) The opacity of the object.
Texture coordinates 8 floats (0,0)(1,0),(0,1),(1,1) The texture coordinates (s, t)

at the 4 corners of a paramet-
ric primitive.

Light Sources shader
list

– A list of light source shaders
that illuminate subsequent
primitives.

Area Light Source shader – An area light source which is
being defined.

Surface shader default surface* A shader controlling the
surface shading model.

Atmosphere shader – A volume shader that speci-
fies how the color of light is
changed as it travels from a
visible surface to the eye.

Interior Volume shader –
Exterior Volume shader – A volume shader that speci-

fies how the color of light is
changed as it traverses a vol-
ume in space.

Effective Shading Rate float 1 Minimum rate of surface
shading.

Shading Interpolation token ”constant” How the results of shading
samples are interpolated.

Matte Surface Flag boolean false A flag indicating the surfaces
of the subsequent primitives
are opaque to the rendering
program, but transparent on
output.

* Implementation-dependent

Table 4.6: Shading Attributes
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RIB BINDING

Color c0 c1... cn
Color [c0 c1... cn]

EXAMPLE

RtColor blue = { .2, .3, .9};
RiColor (blue);

Color [.2 .3 .9]

SEE ALSO

RiOpacity , RiColorSamples

RiOpacity ( RtColor color )

Set the current opacity to color . The color component values must be in the range
[0,1]. Normally there are three components in the color (red, green, and blue), but this
may be changed with RiColorSamples . If the opacity is 1, the object is completely
opaque; if the opacity is 0, the object is completely transparent.

RIB BINDING

Opacity c0 c1... cn
Opacity [c0 c1... cn]

EXAMPLE

Opacity 0.5 1 1

SEE ALSO

RiColorSamples , RiColor

4.2.2 Texture coordinates

The Shading Language allows precalculated images to be accessed by a set of two-dimensional
texture coordinates. This general process is referred to as texture mapping. Texture access in
the Shading Language is very general since the coordinates are allowed to be any legal ex-
pression. However, the texture access functions (in Part II, see the sections on Basic texture
maps) often use default texture coordinates related to the surface parameters.

All the parametric geometric primitives have surface parameters (u,v) that can be used
as their texture coordinates (s,t). Surface parameters for different primitives are normally
defined to lie in the range 0 to 1. This defines a unit square in parameter space. Section
5, Geometric Primitives defines the position on each surface primitive that the corners of
this unit square lie. The texture coordinates at each corner of this unit square are given by
providing a corresponding set of (s,t) values. This correspondence uniquely defines a 3x3
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homogeneous two-dimensional mapping from parameter space to texture space. Special
cases of this mapping occur when the transformation reduces to a scale and an offset, which
is often used to piece patches together, or to an affine transformation, which is used to map
a collection of triangles onto a common planar texture.

The graphics state maintains a current set of texture coordinates. The correspondence between
these texture coordinates and the corners of the unit square is given by the following table.

Surface Parameters Texture Coordinates
(u,v) (s,t)
(0,0) (s1, t1)
(1,0) (s2, t2)
(0,1) (s3, t3)
(1,1) (s4, t4)

By default, the texture coordinates at each corner are the same as the surface parameters
(s=u, t=v). Note that texture coordinates can also be explicitly attached to geometric primi-
tives. Note also that polygonal primitives are not parametric, and the current set of texture
coordinates do not apply to them.

RiTextureCoordinates ( RtFloat s1, RtFloat t1, RtFloat s2, RtFloat t2,
RtFloat s3, RtFloat t3, RtFloat s4, RtFloat t4 )

Set the current set of texture coordinates to the values passed as arguments according
to the above table.

RIB BINDING

TextureCoordinates s1 t1 s2 t2 s3 t3 s4 t4
TextureCoordinates [s1 t1 s2 t2 s3 t3 s4 t4]

EXAMPLE

RiTextureCoordinates (0.0, 0.0, 2.0, -0.5, -0.5, 1.75, 3.0, 3.0);

SEE ALSO

texture() and bump() in the Shading Language

4.2.3 Light sources

The graphics state maintains a current light source list. The lights in this list illuminate
subsequent surfaces. By making this list an attribute different light sources can be used to
illuminate different surfaces. Light sources can be added to this list by turning them on
and removed from this list by turning them off. Note that popping to a previous graphics
state also has the effect of returning the current light list to its previous value. Initially the
graphics state does not contain any lights.
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An area light source is defined by a shader and a collection of geometric primitives. The as-
sociation between the shader and the geometric primitives is done by having the graphics
state maintain a single current area light source. Each time a primitive is defined it is added
to the list of primitives that define the current area light source. An area light source may be
turned on and off just like other light sources.

The RenderMan Interface includes four standard types of light sources: ”ambientlight”,
”pointlight”, ”distantlight”, and ”spotlight”. The definition of these light sources are given
in Appendix A, Standard RenderMan Interface Shaders. The parameters controlling these
light sources are given in Table 4.7, Standard Light Source Shader Parameters.

Light Source Parameter Type Default Description
ambientlight intensity float 1.0 Light intensity

lightcolor color color ”rgb” (1,1,1) Light color

distantlight intensity float 1.0 Light intensity
lightcolor color color ”rgb” (1,1,1) Light color
from point point ”shader” (0,0,0) Light position
to point point ”shader” (0,0,1) Light direction is from-

to

pointlight intensity float 1.0 Light intensity
lightcolor color color ”rgb” (1,1,1) Light color
from point point ”shader” (0,0,0) Light position

spotlight intensity float 1.0 Light intensity
lightcolor color color ”rgb” (1,1,1) Light color
from point point ”shader” (0,0,0) Light position
to point point ”shader” (0,0,1) Light direction is from-

to
coneangle float radians(30) Light cone angle
conedeltaangle float radians(5) Light soft edge angle
beamdistribution float 2.0 Light beam distribution

Table 4.7: Standard Light Source Shader Parameters

RtLightHandle RiLightSource ( RtToken shadername, ...parameterlist...)

shadername is the name of a light source shader. This procedure creates a non-area
light, turns it on, and adds it to the current light source list. An RtLightHandle value
is returned that can be used to turn the light off or on again.

RIB BINDING

LightSource name sequencenumber ...parameterlist...

The sequencenumber is a unique light identification number which is provided by
the RIB client to the RIB server. Both client and server maintain independent map-
pings between the sequencenumber and their corresponding RtLightHandle s. The
number must be in the range 0 to 65535.

EXAMPLE
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LightSource ”spotlight” 2 ”coneangle” [5]
LightSource ”ambientlight” 3 ”lightcolor” [.5 0 0] ”intensity” [.6]

SEE ALSO

RiAreaLightSource , RiIlluminate , RiFrameEnd , RiWorldEnd

RtLightHandle RiAreaLightSource ( RtToken shadername, ...parameterlist...)

shadername is the name of a light source shader. This procedure creates an area
light and makes it the current area light source. Each subsequent geometric primitive
is added to the list of surfaces that define the area light. RiAttributeEnd ends the
assembly of the area light source.

The light is also turned on and added to the current light source list. An RtLightHandle
value is returned which can be used to turn the light off or on again.

If the Area Light Source capability is not supported by a particular implementation,
this subroutine is equivalent to RiLightSource .

RIB BINDING

AreaLightSource name sequencenumber ...parameterlist...

The sequencenumber is a unique light identification number which is provided by
the RIB client to the RIB server. Both client and server maintain independent map-
pings between the sequencenumber and their corresponding RtLightHandle s. The
number must be in the range 0 to 65535.

EXAMPLE

RtFloat decay = .5, intensity = .6;
RtColor color = {.5,0,0};
RiAreaLightSource ( ”finite”, ”decayexponent”, (RtPointer )&decay,

”lightcolor”, (RtPointer )color,
”intensity”, (RtPointer )&intensity, RI NULL);

SEE ALSO

RiFrameEnd , RiLightSource , RiIlluminate , RiWorldEnd

RiIlluminate ( RtLightHandle light, RtBoolean onoff )

If onoff is RI TRUE and the light source referred to by the RtLightHandle is not
currently in the current light source list, add it to the list. If onoff is RI FALSE and the
light source referred to by the RtLightHandle is currently in the current light source
list, remove it from the list. Note that popping the graphics state restores the onoff
value of all lights to their previous values.

RIB BINDING

Illuminate sequencenumber onoff
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The sequencenumber is the integer light handle defined in a LightSource or AreaLightSource
request.

EXAMPLE

LightSource ”main” 3
Illuminate 3 0

SEE ALSO

RiAttributeEnd , RiAreaLightSource , RiLightSource

4.2.4 Surface shading

The graphics state maintains a current surface shader. The current surface shader is used to
specify the surface properties of subsequent geometric primitives. Initially the current
surface shader is set to an implementation-dependent default surface shader (but not ”null”).

The RenderMan Interface includes six standard types of surfaces: ”constant”, ”matte”, ”metal”,
”shinymetal”, ”plastic”, and ”paintedplastic”. The definitions of these surface shading proce-
dures are given in Appendix A, Standard RenderMan Interface Shaders. The parameters
controlling these surfaces are given in Table 4.8, Standard Surface Shader Parameters.

RiSurface ( RtToken shadername, ...parameterlist...)

shadername is the name of a surface shader. This procedure sets the current surface
shader to be shadername. If the surface shader shadername is not defined, some
implementation-dependent default surface shader (but not ”null”) is used.

RIB BINDING

Surface shadername ...parameterlist...

EXAMPLE

RtFloat rough = 0.3, kd = 1.0, width = 0.25;
RiSurface (”wood”, ”roughness”, (RtPointer )&rough,

”Kd”, (RtPointer )&kd, ”float ringwidth”, &width, RI NULL);

SEE ALSO

RiAtmosphere , RiDisplacement
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Surface Name Parameter Type Default Description
constant – – – –

matte Ka float 1.0 Ambient coefficient
Kd float 1.0 Diffuse coefficient

metal Ka float 1.0 Ambient coefficient
Ks float 1.0 Specular coefficient
roughness float 0.1 Surface roughness

shinymetal Ka float 1.0 Ambient coefficient
Ks float 1.0 Specular coefficient
Kr float 1.0 Reflection coefficient
roughness float 0.1 Surface roughness
texturename string ”” Environment map name

plastic Ka float 1.0 Ambient coefficient
Kd float 0.5 Diffuse coefficient
Ks float 0.5 Specular coefficient
roughness float 0.1 Surface roughness
specularcolor color color ”rgb” (1,1,1) Specular color

paintedplastic Ka float 1.0 Ambient coefficient
Kd float 0.5 Diffuse coefficient
Ks float 0.5 Specular coefficient
roughness float 0.1 Surface roughness
specularcolor color color ”rgb” (1,1,1) Specular color
texturename string ”” Texture map name

Table 4.8: Standard Surface Shader Parameters
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4.2.5 Displacement shading

The graphics state maintains a current displacement shader. Displacement shaders are proce-
dures that can be used to modify geometry before the lighting stage.

The RenderMan Interface includes one standard displacement shader: ”bumpy”. The defi-
nition of this displacement shader is given in Appendix A, Standard RenderMan Interface
Shaders. The parameters controlling this displacement is given in Table 4.9.

RiDisplacement ( RtToken shadername, ...parameterlist...)

Set the current displacement shader to the named shader. shadername is the name of a
displacement shader.

If a particular implementation does not support the Displacements capability, dis-
placement shaders can only change the normal vectors to generate bump mapping,
and the surface geometry itself is not modified (see Displacement Shaders).

RIB BINDING

Displacement shadername ...parameterlist...

EXAMPLE

RiDisplacement (”displaceit”, RI NULL);

SEE ALSO

RiDeformation , RiMakeBump , RiSurface

Surface Name Parameter Type Default Description
bumpy amplitude float 1.0 Bump scaling factor

texturename string ”” Displacement map name

Table 4.9: Standard Displacement Shader Parameters

4.2.6 Volume shading

The graphics state contains a current interior volume shader, a current exterior volume shader,
and a current atmosphere shader. These shaders are used to modify the colors of rays travel-
ing through volumes in space.

The interior and exterior shaders define the material properties on the interior and exterior
volumes adjacent to the surface of a geometric primitive. The exterior volume relative
to a surface is the region into which the natural surface normal points; the interior is the
opposite side. Interior and exterior shaders are applied to rays spawned by trace() calls in
a surface shader. Renderers that do not support the optional Ray Tracing capability will
also not support interior and exterior shaders.
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An atmosphere shader is a volume shader that is used to modify rays traveling towards
the eye (i.e., camera rays). Even renderers that do not support the optional Ray Tracing
capability can still apply atmosphere shaders to any objects directly visible to the camera.

The RenderMan Interface includes two standard volume shaders: ”fog” and ”depthcue”.
The definitions of these volume shaders are given in Appendix A, Standard RenderMan
Interface Shaders. The parameters controlling these volumes are given in Table 4.10, Stan-
dard Volume Shader Parameters.

RiAtmosphere ( RtToken shadername, ...parameterlist...)

This procedure sets the current atmosphere shader. shadername is the name of an at-
mosphere shader. If shadername is RI NULL, no atmosphere shader is used.

RIB BINDING

Atmosphere shadername ...parameterlist...

EXAMPLE

Atmosphere ”fog”

SEE ALSO

RiDisplacement , RiSurface

Volume Name Parameter Type Default Description
depthcue mindistance float 0.0 Distance when brightest

maxdistance float 1.0 Distance when dimmest
background color color ”rgb” (0,0,0) Background color

fog distance float 1.0 Exponential extinction
distance

background color color ”rgb” (0,0,0) Background color

Table 4.10: Standard Volume Shader Parameters

RiInterior ( RtToken shadername, ...parameterlist...);

This procedure sets the current interior volume shader. shadername is the name of a
volume or atmosphere shader. If shadername is RI NULL, the surface will not have
an interior shader.

RIB BINDING

Interior shadername ...parameterlist...

EXAMPLE

Interior ”water”
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SEE ALSO

RiExterior RiAtmosphere

RiExterior ( RtToken shadername, ...parameterlist...);

This procedure sets the current exterior volume shader. shadername is the name of a
volume or atmosphere shader. If shadername is RI NULL, the surface will not have
an exterior shader.

RIB BINDING

Exterior shadername ...parameterlist...

EXAMPLE

RiExterior ( ”fog,” RI NULL);

SEE ALSO

RiInterior , RiAtmosphere

If a particular implementation does not support the Volume Shading or Ray Tracing capabil-
ities, RiInterior and RiExterior are ignored; however, RiAtmosphere will be available in
all implementations.

4.2.7 Shading rate

The number of shading calculations per primitive is controlled by the current shading rate.
The shading rate is expressed in pixel area. If geometric primitives are being broken down
into polygons and each polygon is shaded once, the shading rate is interpreted as the max-
imum size of a polygon in pixels. A rendering program will shade at least at this rate,
although it may shade more often. Whatever the value of the shading rate, at least one
shading calculation is done per primitive.

RiShadingRate ( RtFloat size )

Set the current shading rate to size. The current shading rate is specified as an area in
pixels. A shading rate of RI INFINITY specifies that shading need only be done once
per primitive. A shading rate of 1 specifies that shading is done at least once per
pixel. This second case is often referred to as Phong shading.

RIB BINDING

ShadingRate size

EXAMPLE

RiShadingRate (1.0);
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SEE ALSO

RiGeometricApproximation

4.2.8 Shading interpolation

Shading calculations are performed at discrete positions on surface elements or in screen
space (at a frequency determined by the shading rate). The results can then either be in-
terpolated or constant over some region of the screen or the interior of a surface element
corresponding to one shading sample. This is controlled by the following procedure:

RiShadingInterpolation ( RtToken type )

This function controls how values are interpolated between shading samples (usually
across a polygon or over an area of the screen). If type is ”constant”, the color and
opacity of all the pixels inside the region are the same. This is often referred to as flat
or faceted shading. If type is ”smooth”, the color and opacity of all the pixels between
shaded values are interpolated from the calculated values. This is often referred to as
Gouraud shading.

RIB BINDING

ShadingInterpolation ”constant”
ShadingInterpolation ”smooth”

EXAMPLE

ShadingInterpolation ”smooth”

4.2.9 Matte objects

Matte objects are the functional equivalent of three-dimensional hold-out mattes. Matte
objects are not shaded and are set to be completely opaque so that they hide objects behind
them. However, regions in the output image where a matte object is visible are treated as
transparent.

RiMatte ( RtBoolean onoff )

Indicates whether subsequent primitives are matte objects.

RIB BINDING
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Matte onoff

EXAMPLE

RiMatte (RI TRUE);

SEE ALSO

RiSurface

Geometry Attribute Type Default Description
Object-to-World transform identity Transformation from object

or model coordinates to
world coordinates.

Bound 6 floats infinite Subsequent geometric primi-
tives lie inside this box.

Detail Range 4 floats (0, 0,∞,∞) Current range of detail. If the
current detail is in this range,
geometric primitives are ren-
dered.

Geometric Approxi-
mation

token value – The largest deviation of an
approximation of a surface
from the true surface in raster
coordinates.

Cubic Basis Matrices 2 matrices Bezier, Bezier Basis matrices for bicubic
patches. There is a separate
basis matrix for both the u
and the v directions.

Cubic Basis Steps 2 integers 3, 3
Trim Curves – – A list of trim curves which

bound NURBS.
Orientation token ”outside” Whether primitives are de-

fined in a left-handed or
right-handed coordinate sys-
tem.

Number of Sides integer 2 Whether subsequent surfaces
are considered to have one or
two sides.

Displacement shader – A displacement shader that
specifies small changes in
surface geometry.

Table 4.11: Geometry Attributes
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4.2.10 Bound

The graphics state maintains a bounding box called the current bound. The rendering pro-
gram may clip or cull primitives to this bound.

RiBound ( RtBound bound )

This procedure sets the current bound to bound . The bounding box bound is specified
in the current object coordinate system. Subsequent output primitives should all lie
within this bounding box. This allows the efficient specification of a bounding box
for a collection of output primitives.

RIB BINDING

Bound xmin xmax ymin ymax zmin zmax
Bound [xmin xmax ymin ymax zmin zmax ]

EXAMPLE

Bound [0 0.5 0 0.5 0.9 1]

SEE ALSO

RiDetail

4.2.11 Detail

The graphics state maintains a relative detail, a current detail, and a current detail range. The
current detail is used to select between multiple representations of objects each character-
ized by a different range of detail. The current detail range is given by 4 values. These
four numbers define transition ranges between this range of detail and the neighboring
representations. If the current detail lies inside the current detail range, geometric primitives
comprising this representation will be drawn.

Suppose there are two object definitions, foo1 and foo2, for an object. The first contains more
detail and the second less. These are communicated to the rendering program using the
following sequence of calls.

RiDetail ( bound );
RiDetailRange ( 0., 0., 10., 20. );

RiObjectInstance ( foo1 );
RiDetailRange ( 10., 20., RI INFINITY, RI INFINITY);

RiObjectInstance ( foo2 );

The current detail is set by RiDetail . The detail ranges indicate that object foo1 will be drawn
when the current detail is below 10 (thus it is the low detail detail representation) and that
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object foo2 will be drawn when the current detail is above 20 (thus it is the high detail repre-
sentation). If the current detail is between 10 and 20, the rendering program will provide a
smooth transition between the low and high detail representations.

RiDetail ( RtBound bound )

Set the current bound to bound. The bounding box bound is specified in the current co-
ordinate system. The current detail is set to the area of this bounding box as projected
into the raster coordinate system, times the relative detail. Before computing the raster
area, the bounding box is clipped to the near clipping plane but not to the edges of
the display or the far clipping plane. The raster area outside the field of view is com-
puted so that if the camera zooms in on an object the detail will increase smoothly.
Detail is expressed in raster coordinates so that increasing the resolution of the output
image will increase the detail.

RIB BINDING

Detail minx maxx miny maxy minz maxz
Detail [minx maxx miny maxy minz maxz]

EXAMPLE

RtBound box = { 10.0, 20.0, 42.0, 69.0, 0.0, 1.0 };
RiDetail (box);

SEE ALSO

RiBound , RiDetailRange , RiRelativeDetail

RiDetailRange ( RtFloat minvisible, RtFloat lowertransition,
RtFloat uppertransition, RtFloat maxvisible )

Set the current detail range. Primitives are never drawn if the current detail is less than
minvisible or greater than maxvisible. Primitives are always drawn if the current detail
is between lowertransition and uppertransition. All these numbers should be non-
negative and satisfy the following ordering:

minvisible ≤ lowertransition ≤ uppertransition ≤ maxvisible.

RIB BINDING

DetailRange minvisible lowertransition uppertransition maxvisible
DetailRange [minvisible lowertransition uppertransition maxvisible]

EXAMPLE

DetailRange [0 0 10 20]

SEE ALSO

RiDetail , RiRelativeDetail
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If the Detail capability is not supported by a particular implementation, all object represen-
tations which include RI INFINITY in their detail ranges are rendered.

4.2.12 Geometric approximation

Geometric primitives are typically approximated by using small surface elements or poly-
gons. The size of these surface elements affects the accuracy of the geometry since large
surface elements may introduce straight edges at the silhouettes of curved surfaces or cause
particular points on a surface to be projected to the wrong point in the final image.

RiGeometricApproximation ( RtToken type, RtFloat value )

The predefined geometric approximation is ”flatness”. Flatness is expressed as a dis-
tance from the true surface to the approximated surface in pixels. Flatness is some-
times called chordal deviation.

RIB BINDING

GeometricApproximation ”flatness” value
GeometricApproximation type value

EXAMPLE

GeometricApproximation ”flatness” 2.5

SEE ALSO

RiShadingRate

4.2.13 Orientation and sides

The handedness of a coordinate system is referred to as its orientation. The initial ”camera”
coordinate system is left-handed: x points right, y point up, and z points in. Transfor-
mations, however, can flip the orientation of the current coordinate system. An example
of a transformation that does not preserve orientation is a reflection. (More generally, a
transformation does not preserve orientation if its determinant is negative.)

Similarly, geometric primitives have an orientation, which determines whether their surface
normals are defined using a right-handed or left-handed rule in their object coordinate
system. Defining the orientation of a primitive to be opposite that of the object coordinate
system causes it to be turned inside-out. If a primitive is inside-out, its normal will be com-
puted so that it points in the opposite direction. This has implications for culling, shading,
and solids (see the section on Solids and Spatial Set Operations). The outside surface of a
primitive is the side from which the normal points outward; the inside surface is the op-
posite side. The interior of a solid is the volume that is adjacent to the inside surface and
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the exterior is the region adjacent to the outside. This is discussed further in the section on
Geometric Primitives.

The current orientation of primitives is maintained as part of the graphics state independent
of the orientation of the current coordinate system. The current orientation is initially set
to match the orientation of the initial coordinate system, and always flips whenever the
orientation of the current coordinate system flips. It can also be modified directly with
RiOrientation and RiReverseOrientation . If the current orientation is not the same as the
orientation of the current coordinate system, geometric primitives are turned inside out,
and their normals are automatically flipped.

RiOrientation ( RtToken orientation )

This procedure sets the current orientation to be either ”outside” (to match the current
coordinate system), ”inside” (to be the opposite of the current coordinate system), ”lh”
(for explicit left-handed orientation) or ”rh” (for explicit right-handed orientation).

RIB BINDING

Orientation orientation

EXAMPLE

Orientation ”lh”

SEE ALSO

ReverseOrientation

RiReverseOrientation ()

Causes the current orientation to be toggled. If the orientation was right-handed it is
now left-handed, and vice versa.

RIB BINDING

ReverseOrientation -

EXAMPLE

RiReverseOrientation ();

SEE ALSO

RiOrientation

Objects can be two-sided or one-sided. Both the inside and the outside surface of two-sided
objects are visible, whereas only the outside surface of a one-sided object is visible. If the
outside of a one-sided surface faces the viewer, the surface is said to be frontfacing, and if
the outside surface faces away from the viewer, the surface is backfacing. Normally closed
surfaces should be defined as one-sided and open surfaces should be defined as two-sided.
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The major exception to this rule is transparent closed objects, where both the inside and the
outside are visible.

RiSides ( RtInt sides )

If sides is 2, subsequent surfaces are considered two-sided and both the inside and the
outside of the surface will be visible. If sides is 1, subsequent surfaces are considered
one-sided and only the outside of the surface will be visible.

RIB BINDING

Sides sides

EXAMPLE

Sides 1

SEE ALSO

RiOrientation

4.3 Transformations

Transformations are used to transform points between coordinate systems. At various
points when defining a scene the current transformation is used to define a particular coor-
dinate system. For example, RiProjection establishes the camera coordinate system, and
RiWorldBegin establishes the world coordinate system.

The current transformation is maintained as part of the graphics state. Commands exist to set
and to concatenate specific transformations onto the current transformation. These include
the basic linear transformations translation, rotation, skew, scale and perspective. Con-
catenating transformations implies that the current transformation is updated in such a way
that the new transformation is applied to points before the old current transformation. Stan-
dard linear transformations are given by 4x4 matrices. These matrices are premultiplied
by 4-vectors in row format to transform them.

The following three transformation commands set or concatenate a 4x4 matrix onto the
current transformation:

RiIdentity ()

Set the current transformation to the identity.

RIB BINDING

Identity -

EXAMPLE
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RiIdentity ( );

SEE ALSO

RiTransform

RiTransform ( RtMatrix transform )

Set the current transformation to the transformation transform.

RIB BINDING

Transform transform

EXAMPLE

Transform [.5 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1]

SEE ALSO

RiIdentity , RiConcatTransform

RiConcatTransform ( RtMatrix transform )

Concatenate the transformation transform onto the current transformation. The trans-
formation is applied before all previously applied transformations, that is, before the
current transformation.

RIB BINDING

ConcatTransform transform

EXAMPLE

RtMatrix foo = { 2.0, 0.0, 0.0, 0.0, 0.0, 2.0, 0.0, 0.0,
0.0, 0.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0 };

RiConcatTransform ( foo );

SEE ALSO

RiIdentity , RiTransform , RiRotate , RiScale , RiSkew

The following commands perform local concatenations of common linear transformations
onto the current transformation.

RiPerspective ( RtFloat fov )
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Concatenate a perspective transformation onto the current transformation. The focal
point of the perspective is at the origin and its direction is along the z-axis. The field
of view angle, fov , specifies the full horizontal field of view.

The user must exercise caution when using this transformation, since points behind
the eye will generate invalid perspective divides which are dealt with in a renderer-
specific manner.

To request a perspective projection from camera space to screen space, an RiProjec-
tion request should be used; RiPerspective is used to request a perspective model-
ing transformation from object space to world space, or from world space to camera
space.

RIB BINDING

Perspective fov

EXAMPLE

Perspective 90

SEE ALSO

RiConcatTransform , RiDepthOfField , RiProjection

RiTranslate ( RtFloat dx, RtFloat dy, RtFloat dz )

Concatenate a translation onto the current transformation.

RIB BINDING

Translate dx dy dz

EXAMPLE

RiTranslate (0.0, 1.0, 0.0);

SEE ALSO

RiConcatTransform , RiRotate , RiScale

RiRotate ( RtFloat angle, RtFloat dx, RtFloat dy, RtFloat dz )

Concatenate a rotation of angle degrees about the given axis onto the current transfor-
mation.

RIB BINDING

Rotate angle dx dy dz

EXAMPLE

RiRotate (90.0, 0.0, 1.0, 0.0);

SEE ALSO

RiConcatTransform , RiScale , RiTranslate
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RiScale ( RtFloat sx, RtFloat sy, RtFloat sz )

Concatenate a scaling onto the current transformation.

RIB BINDING

Scale sx sy sz

EXAMPLE

Scale 0.5 1 1

SEE ALSO

RiConcatTransform , RiRotate , RiSkew , RiTranslate

RiSkew ( RtFloat angle, RtFloat dx1, RtFloat dy1, RtFloat dz1,
RtFloat dx2, RtFloat dy2, RtFloat dz2 )

Concatenate a skew onto the current transformation. This operation shifts all points
along lines parallel to the axis vector (dx2, dy2, dz2). Points along the axis vector
(dx1, dy1, dz1) are mapped onto the vector (x, y, z), where angle specifies the angle
(in degrees) between the vectors (dx1, dy1, dz1) and (x, y, z), The two axes are not
required to be perpendicular, however it is an error to specify an angle that is greater
than or equal to the angle between them. A negative angle can be specified, but it
must be greater than 180 degrees minus the angle between the two axes.

RIB BINDING

Skew angle dx1 dy1 dz1 dx2 dy2 dz2
Skew [angle dx1 dy1 dz1 dx2 dy2 dz2]

EXAMPLE

RiSkew (45.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0);

SEE ALSO

RiRotate , RiScale , RiTransform

4.3.1 Named coordinate systems

Shaders often need to perform calculations in non-standard coordinate systems. The coor-
dinate systems with predefined names are: ”raster”, ”NDC”, ”screen”, ”camera”, ”world”, and
”object”. At any time, the current coordinate system can be marked for future reference.

RiCoordinateSystem ( RtToken name )
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This function marks the coordinate system defined by the current transformation
with the name space and saves it. This coordinate system can then be referred to by
name in subsequent shaders, or in RiTransformPoints . A shader cannot refer to a
coordinate system that has not already been named. The list of named coordinate
systems is global.

RIB BINDING

CoordinateSystem name

EXAMPLE

CoordinateSystem ”lamptop”

SEE ALSO

RiCoordSysTransform , RiTransformPoints

RiCoordSysTransform ( RtToken name )

This function replaces the current transformation matrix with the matrix that forms
the name coordinate system. This permits objects to be placed directly into special or
user-defined coordinate systems by their names.

RIB BINDING

CoordSysTransform name

EXAMPLE

CoordSysTransform ”lamptop”

SEE ALSO

RiCoordinateSystem

RtPoint *
RiTransformPoints ( RtToken fromspace, RtToken tospace, RtInt n, RtPoint points[] )

This procedure transforms the array of points from the coordinate system fromspace
to the coordinate system tospace. This array contains n points. If the transformation
is successful, the array points is returned. If the transformation cannot be computed
for any reason (e.g., one of the space names is unknown or the transformation re-
quires the inversion of a noninvertable transformation), NULL is returned.

EXAMPLE

RtPoint four points[4];
RiTransformPoints (”current,” ”lamptop,” 4, four points);

SEE ALSO

RiCoordinateSystem , RiProjection , RiWorldBegin
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4.3.2 Transformation stack

Transformations can be saved and restored recursively. Note that pushing and popping
the attributes also pushes and pops the current transformation.

RiTransformBegin ()
RiTransformEnd ()

Push and pop the current transformation. Pushing and popping must be properly
nested with respect to the various begin-end constructs.

RIB BINDING

TransformBegin -
TransformEnd -

EXAMPLE

RiTransformBegin ();

SEE ALSO

RiAttributeBegin

4.4 Implementation-specific Attributes

Rendering programs may have additional implementation-specific attributes that control
parameters that affect primitive appearance or interpretation. These are all set by the fol-
lowing procedure.

RiAttribute ( RtToken name, ...parameterlist...);

Set the parameters of the attribute name, using the values specified in the token-value
list parameterlist .

Although RiAttribute is intended to allow implementation-specific attributes, there
are a number of attributes that we expect that nearly all implementations will need
to support. It is intended that when identical functionality is required, that all imple-
mentations use the attribute names listed in Table 4.12.

RIB BINDING

Attribute name ...parameterlist...

EXAMPLE

Attribute ”displacementbound” ”sphere” [2.0]

SEE ALSO
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RiAttributeBegin

Attribute name/param Type Default Description
”displacementbound”
”sphere” [s]

float 0 Amount to pad bounding box for
displacement.

”displacementbound” ”coor-
dinatesystem” [c]

string ”object” The name of the coordinate sys-
tem that the displacement bound
is measured in.

”identifier” ”name” [n] string ”” The name of the object (helpful for
reporting errors).

”trimcurve” ”sense” [n] string ”inside” If ”inside”, trim the interior of Trim
Curve regions. If ”outside”, trim
the exterior of the trim region.

Table 4.12: Typical implementation-specific attributes
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Section 5

GEOMETRIC PRIMITIVES

The RenderMan Interface supports only surface- and solid-defining geometric primitives.
Solid primitives are created from surfaces and combined using set operations. The geo-
metric primitives include:

• planar convex polygons, as well as general planar concave polygons with holes,

• collections of planar convex or general planar concave polygons with holes which
share vertices (polyhedra),

• bilinear patches and patch meshes,

• bicubic patches and patch meshes with an arbitrary basis,

• non-uniform rational B-spline surfaces of arbitrary degree (NURBS),

• quadric surfaces, tori, and disks,

• subdivion surface meshes,

• implicit surfaces,

• 1D points and 2D curves or ribbons.

Control vertex points are used to construct polygons, patches, NURBS, subdivision meshes,
point clouds, and curves. Point positions can be either an (x,y,z) triplet (”P”) or an (x,y,z,w)
4-vector (”Pw”). If the vertex is part of a patch mesh, the position may be used to define
a height field. In this case the vertex point contains only a (z) coordinate (”Pz”), and the
(x,y)s of points of the height field are set equal to the parametric surface parameters of the
mesh.

All primitives have well-defined geometric surface normals, so normals need not be pro-
vided with any primitive. The surface normal for a polygon is the perpendicular to the
plane containing the polygon. The surface normal for a parametric curved surface is
computed by taking the cross product of the surface’s parametric derivatives: (∂P/∂u) ×
(∂P/∂v). As mentioned in the Section 4.2.13, Orientation and Sides, if the current orientation
does not match the orientation of the current coordinate system, normals will be flipped. It
is also possible to provide additional shading normals (”N”) at polygon and bilinear patch
vertices to help make the surface appear smooth.
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Quadrics, patches and patch meshes, and NURBS primitives have well-defined global two-
dimensional surface parameters. All the points on the surface of each primitive are func-
tions of these parameters (u,v). Except for NURBS and polygons, the domain of the surface
parameters is the unit square from 0 to 1. Texture coordinates may be attached to primi-
tives by assigning four sets of texture coordinates, one set to each corner of this unit square.
This is done by setting the current set of texture coordinates or by defining texture coordinates
with the geometric primitives as described below.

Subdivision surfaces and implicit surfaces have locally defined parameterizations, but no
globally consistent parameterization across an arbitrary surface of that type.

All geometric primitives normally inherit their color and opacity from the graphics state.
However, explicit colors and opacities can be provided when defining the primitive (”Cs”
and ”Os”).

Associated with each geometric primitive definition are additional primitive variables that
are passed to their shaders. These variables may define quantities that are constant over
the surface (class constant), piecewise-constant but with separate values per subprimitive
(class uniform), bilinearly interpolated (class varying), or fully interpolated (class vertex).
If the primitive variable is uniform, there is one value per surface facet. If the primitive
variable is varying, there are four values per surface facet, one for each corner of the unit
square in parameter space (except polygons, which are a special case). On parametric
primitives (quadrics and patches), varying primitive variables are bilinearly interpolated
across the surface of the primitive. Colors, opacities, and shading normals are all examples
of varying primitive variables.

The standard predefined primitive variables are defined in Table 5.1 Standard Geometric
Primitive Variables. Other primitive variables may be predefined by specific implementa-
tions or defined by the user with the RiDeclare function, or may be declared “in-line” as
part of the parameter name itself (see Section 3). Primitive variables which are declared
to be of type point (including the three predefined position variables), vector, normal, or
matrix are specified in object space, and will be transformed by the current transformation
matrix. Any vector or normal variables will be transformed by the equivalent transforma-
tion matrix for vectors or normals. Primitive variables which are declared to be of type
color must contain the correct number of floating point values as defined in RiColorSam-
ples . More information about how to use primitive variables is contained in Part II: The
RenderMan Shading Language.

5.1 Polygons

The RenderMan Interface supports two basic types of polygons: a convex polygon and a
general concave polygon with holes. In both cases the polygon must be planar. Collections
of polygons can be passed by giving a list of points and an array that indexes these points.

The geometric normal of the polygon is computed by computing the normal of the plane
containing the polygon (unless it is explicitly specified). If the current orientation is left-
handed, then a polygon whose vertices were specified in clockwise order (from the point
of view of the camera) will be a front-facing polygon (that is, will have a normal vector
which points toward the camera). If the current orientation is right-handed, then polygons
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Information Name Type Class Floats
Position ”P” point vertex 3

”Pz” float vertex 1
”Pw” h vertex 4

Normal ”N” normal varying 3

Color ”Cs” color varying (3)

Opacity ”Os” color varying (3)

Texture Coordinates ”s” float varying 1
”t” float varying 1
”st” 2 float varying 2

Table 5.1: Standard Geometric Primitive Variables

whose vertices were specified in counterclockwise order will be front-facing. The shading
normal is set to the geometric normal unless it is explicitly specified at the vertices.

The surface parameters of a polygon are its (x,y) coordinates. This is because the height z
of a plane is naturally parameterized by its (x,y) coordinates, unless it is vertical. Texture
coordinates are set equal to the surface parameters unless texture coordinates are given
explicitly, one set per vertex. Polygons do not inherit texture coordinates from the graphics
state.

The rules for primitive variable interpolation and texture coordinates are different for poly-
gons than for all other geometric primitives. Constant primitive variables are supplied as
a single value for the entire aggregate primitive. Uniform primitive variables are supplied
for each polygon. Both varying and vertex primitive variables are supplied for each poly-
gon vertex, and are interpolated across the interior without regard to the artificial surface
parameters defined above. Note that interpolating values across polygons is inherently
ill-defined. However, linearly interpolating values across a triangle is always well defined.
Thus, for the purposes of interpolation, polygons are always decomposed into triangles.
However, the details of how this decomposition is done is implementation-dependent and
may depend on the view.

RiPolygon ( RtInt nvertices, ...parameterlist...)

nvertices is the number of vertices in a single closed planar convex polygon. parameterlist
is a list of token-array pairs where each token is one of the standard geometric prim-
itive variables or a variable which has been defined with RiDeclare . The parameter
list must include at least position (”P”) information. If a primitive variable is of class
vertex or varying, the array contains nvertices elements of the type corresponding
to the token. If the variable is uniform or constant, the array contains a single ele-
ment. The number of floats associated with each type is given in Table 5.1, Standard
Geometric Primitive Variables.

No checking is done by the RenderMan Interface to ensure that polygons are planar,
convex and nondegenerate. The rendering program will attempt to render invalid
polygons but the results are unpredictable.
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RIB BINDING

Polygon ...parameterlist...

The number of vertices in the polygon is determined implicitly by the number of
elements in the required position array.

EXAMPLE

RtPoint points[4] = ( 0.0, 1.0, 0.0, 0.0, 1.0, 1.0,
0.0, 0.0, 1.0, 0.0, 0.0, 0.0);

RiPolygon (4, RI P, (RtPointer)points, RI NULL);

SEE ALSO

RiGeneralPolygon , RiPointsGeneralPolygons , RiPointsPolygons

An example of the definition of a “Gouraud-shaded” polygon is:

RtPoint points[4];
RtColor colors[4];
RiPolygon ( 4, ”P”, (RtPointer )points, ”Cs”, (RtPointer )colors, RI NULL);

A “Phong-shaded” polygon is given by:

RtPoint points[4];
RtPoint normals[4];
RiPolygon ( 4, ”P”, (RtPointer )points, ”N”, (RtPointer )normals, RI NULL);

RiGeneralPolygon ( RtInt nloops, RtInt nvertices[], ...parameterlist...)

Define a general planar concave polygon with holes. This polygon is specified by
giving nloops lists of vertices. The first loop is the outer boundary of the polygon;
all additional loops are holes. The array nvertices contains the number of vertices in
each loop, and has length nloops. The vertices in all the loops are concatenated into
a single vertex array. The length of this array, n, is equal to the sum of all the values
in the array nvertices.

parameterlist is a list of token-array pairs where each token is one of the standard
geometric primitive variables or a variable that has been defined with RiDeclare . The
parameter list must include at least position (”P”) information. If a primitive variable
is of class vertex or varying, the array contains n elements of the type corresponding
to the token. If the variable is uniform or constant, there is a single element of that
type. The number of floats associated with each type is given in Table 5.1, Standard
Geometric Primitive Variables. The interpretation of these variables is the same as for
a convex polygon.
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No checking is done by the RenderMan Interface to ensure that polygons are planar
and nondegenerate. The rendering program will attempt to render invalid polygons
but the results are unpredictable.

RIB BINDING

GeneralPolygon nvertices ...parameterlist...

The number of loops in the general polygon is determined implicitly by the length of
the nvertices array.

EXAMPLE

GeneralPolygon [4 3] ”P” [ 0 0 0 0 1 0 0 1 1 0 0 1
0 0.25 0.5 0 0.75 0.75 0 0.75 0.25 ]

SEE ALSO

RiPolygon , RiPointsPolygons , RiPointsGeneralPolygons

RiPointsPolygons ( RtInt npolys, RtInt nvertices[], RtInt vertices[], ...parameterlist...)

Define npolys planar convex polygons that share vertices. The array nvertices con-
tains the number of vertices in each polygon and has length npolys. The array ver-
tices contains, for each polygon vertex, an index into the varying primitive variable
arrays. The varying arrays are 0-based. vertices has length equal to the sum of all
of the values in the nvertices array. Individual vertices in the parameterlist are thus
accessed indirectly through the indices in the array vertices.

parameterlist is a list of token-array pairs where each token is one of the standard ge-
ometric primitive variables or a variable that has been defined with RiDeclare . The
parameter list must include at least position (”P”) information. If a primitive variable
is of class vertex or varying, the array contains n elements of the type corresponding
to the token, where the number n is equal to the maximum value in the array vertices
plus one. If the variable is uniform, the array contains npolys elements of the asso-
ciated type. If the variable is constant, the array contains exactly one element of the
associated type. The number of floats associated with each type is given in Table 5.1,
Standard Geometric Primitive Variables. The interpretation of these variables is the
same as for a convex polygon.

No checking is done by the RenderMan Interface to ensure that polygons are planar,
convex and nondegenerate. The rendering program will attempt to render invalid
polygons but the results are unpredictable.

RIB BINDING

PointsPolygons nvertices vertices ...parameterlist...

The number of polygons is determined implicitly by the length of the nvertices array.

EXAMPLE

PointsPolygons [3 3 3] [0 3 2 0 1 3 1 4 3]
”P” [0 1 1 0 3 1 0 0 0 0 2 0 0 4 0]
”Cs” [0 .3 .4 0 .3 .9 .2 .2 .2 .5 .2 0 .9 .8 0]
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SEE ALSO

RiGeneralPolygon , RiPointsGeneralPolygons , RiPolygon

RiPointsGeneralPolygons ( RtInt npolys, RtInt nloops[], RtInt nvertices[],
RtInt vertices[], ...parameterlist...)

Define npolys general planar concave polygons, with holes, that share vertices. The
array nloops indicates the number of loops comprising each polygon and has a length
npolys. The array nvertices contains the number of vertices in each loop and has a
length equal to the sum of all the values in the array nloops. The array vertices
contains, for each loop vertex, an index into the varying primitive variable arrays. All
of the arrays are 0-based. vertices has a length equal to the sum of all the values in the
array nvertices. Individual vertices in the parameterlist are thus accessed indirectly
through the indices in the array vertices.

parameterlist is a list of token-array pairs where each token is one of the standard
geometric primitive variables or a variable that has been defined with RiDeclare .
The parameter list must include at least position (”P”) information. If a primitive
variable is of storage class vertex or varying, the array contains n elements of the type
corresponding to the token. The number n is equal to the maximum value in the array
vertices plus one. If the variable is uniform, the array contains npolys elements of the
associated type. If the variable is constant, the array contains a single element of the
associated type. The number of floats associated with each type is given in Table 5.1,
Standard Geometric Primitive Variables. The interpretation of these variables is the
same as for a convex polygon.

No checking is done by the RenderMan Interface to ensure that polygons are planar
and nondegenerate. The rendering program will attempt to render invalid polygons
but the results are unpredictable.

RIB BINDING

PointsGeneralPolygons nloops nvertices vertices ...parameterlist...

The number of polygons is determined implicitly by the length of the nloops array.

EXAMPLE

PointsGeneralPolygons [2 2] [4 3 4 3] [0 1 4 3 6 7 8 1 2 5 4 9 10 11]
”P” [0 0 1 0 1 1 0 2 1 0 0 0 0 1 0 0 2 0
0 0.25 0.5 0 .75 .75 0 .75 .25
0 1.25 0.5 0 1.75 .75 0 1.75 .25]

SEE ALSO

RiGeneralPolygon , RiPointsPolygons , RiPolygon
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5.2 Patches

Patches can be either uniform or non-uniform (contain different knot values). Patches can
also be non-rational or rational depending on whether the control points are (x, y, z) or
(x, y, z, w). Patches may also be bilinear or bicubic. The graphics state maintains two 4x4
matrices that define the bicubic patch basis matrices. One of these is the current u-basis and
the other is the current v-basis. Basis matrices are used to transform from the power basis
to the preferred basis.

RiBasis ( RtBasis ubasis, RtInt ustep, RtBasis vbasis, RtInt vstep )

Set the current u-basis to ubasis and the current v-basis to vbasis. Predefined basis
matrices exist for the common types:

RtBasis RiBezierBasis ;
RtBasis RiBSplineBasis ;
RtBasis RiCatmullRomBasis ;
RtBasis RiHermiteBasis ;
RtBasis RiPowerBasis ;

The variables ustep and vstep specify the number of control points that should be
skipped in the u and v directions, respectively, to get to the next patch in a bicubic
patch mesh. The appropriate step values for the predefined cubic basis matrices are:

Basis Step
RiBezierBasis 3
RiBSplineBasis 1
RiCatmullRomBasis 1
RiHermiteBasis 2
RiPowerBasis 4

The default basis matrix is RiBezierBasis in both directions.

RIB BINDING

Basis uname ustep vname vstep
Basis uname ustep vbasis vstep
Basis ubasis ustep vname vstep
Basis ubasis ustep vbasis vstep

For each basis, either the name of a predefined basis (as a string) or a matrix may be
supplied. If a basis name specified, it must be one of: ”bezier”, ”b-spline”, ”catmull-
rom”, ”hermite”, or ”power”.

EXAMPLE

Basis ”b-spline” 1 [-1 3 -3 1 3 -6 3 0 -3 3 0 0 1 0 0 0] 1

SEE ALSO

RiPatch , RiPatchMesh
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Note that the geometry vector used with the RiHermiteBasis basis matrix must be (point0,
vector0, point1, vector1), which is a permutation of the Hermite geometry vector often
found in mathematics texts. Using this formulation permits a step value of 2 to correctly
increment over data in Hermite patch meshes.

RiPatch ( RtToken type, ...parameterlist...)

Define a single patch. type can be either ”bilinear” or ”bicubic”. parameterlist is a list of
token-array pairs where each token is one of the standard geometric primitive vari-
ables or a variable which has been defined with RiDeclare . The parameter list must
include at least position (”P”, ”Pw” or ”Pz”) information. Patch arrays are specified
such that u varies faster than v.

Four points define a bilinear patch, and 16 define a bicubic patch. The order of ver-
tices for a bilinear patch is (0,0),(1,0),(0,1),(1,1). Note that the order of points defining
a quadrilateral is different depending on whether it is a bilinear patch or a polygon.
The vertices of a polygon would normally be in clockwise (0,0),(0,1),(1,1),(1,0) order.

Patch primitive variables that are constant or uniform should supply one value, which
is constant over the patch. Primitive variables that are varying should supply four
values, one for each parametric corner of the patch (the data will be interpolated
bilinearly). Primitive variables that are vertex should supply four values for a bilinear
patch, or 16 values for a bicubic patch — that is, the same number of values as control
vertices ”P”. A vertex primitive variable will be interpolated across the surface in the
same manner as the surface position ”P”. In all cases, the actual size of each array is
this number of values times the size of the type associated with the variable.

RIB BINDING

Patch type ...parameterlist...

EXAMPLE

Patch ”bilinear” ”P” [ -0.08 0.04 0.05 0 0.04 0.05
-0.08 0.03 0.05 0 0.03 0.05]

SEE ALSO

RiBasis , RiNuPatch , RiPatchMesh

RiPatchMesh ( RtToken type, RtInt nu, RtToken uwrap,
RtInt nv, RtInt vwrap, ...parameterlist...)
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Figure 5.1: Bicubic patch vertex ordering

This primitive is a compact way of specifying a quadrilateral mesh of patches. Each
individual patch behaves as if it had been specified with RiPatch . type can be either
”bilinear” or ”bicubic”. parameterlist is a list of token-array pairs where each token is
one of the geometric primitive variables or a variable which has been defined with
RiDeclare . The parameter list must include at least position (”P”, ”Pw” or ”Pz”) in-
formation. Patch mesh vertex data is supplied in first u and then v order just as for
patches. The number of control points in a patch mesh is (nu)*(nv ).

Meshes can wrap around in the u or v direction, or in both directions. If meshes
wrap, they close upon themselves at the ends and the first control points will be
automatically repeated. As many as three control points may be repeated, depending
on the basis matrix of the mesh. The way in which meshes wrap is indicated by giving
a wrap mode value of either ”periodic” or ”nonperiodic”.

The actual number of patches produced by this request depends on the type of the
patch and the wrap modes specified. For bilinear patches, the number of patches in
the u direction, nupatches, is given by

nupatches =
{

nu if uwrap = ”periodic”
nu− 1 if uwrap = ”nonperiodic”

while for bicubic patches,

nupatches =


(

nu
nustep

)
if uwrap = ”periodic”

(
nu−4

nustep

)
+ 1 if uwrap = ”nonperiodic”

The same rules hold in the v direction. The total number of patches produced is equal
to the product of the number of patches in each direction.
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A PatchMesh primitive variable of class vertex has the same number of entries as the
position ”P” (i.e., nu×nv) and is interpolated using the same order and basis matrices.
Any varying primitive variables are interpolated piecewise-bilinearly across the patch
mesh and contain n values, one for each patch corner, where n is defined by:

uwrap vwrap
n = (nupatches+ 1) · nvpatches ”nonperiodic” ”periodic”
n = (nupatches+ 1) · (nvpatches+ 1) ”nonperiodic” ”nonperiodic”
n = nupatches · (nvpatches+ 1) ”periodic” ”nonperiodic”
n = nupatches · nvpatches ”periodic” ”periodic”

(with nupatches and nvpatches defined as given above). If a variable is uniform, it
contains nupatches× nvpatches elements of its type, one for each patch (see Figure 5.2).
Primitive variables of class constant have exactly one data element of the appropriate
type.

A patch mesh is parameterized by a (u,v) which goes from 0 to 1 for the entire mesh.
Texture maps that are assigned to meshes that wrap should also wrap so that filtering
at the seams can be done correctly (see the section on Texture Map Utilities). If texture
coordinates are inherited from the graphics state, they correspond to the corners of
the mesh.

Height fields can be specified by giving just a z coordinate at each vertex (using ”Pz”);
the x and y coordinates are set equal to the parametric surface parameters. Height
fields cannot be periodic.

RIB BINDING

PatchMesh type nu uwrap nv vwrap ...parameterlist...

EXAMPLE

RtPoint pts[28];
RtFloat foos[2];
RtFloat bars[6];
RiBasis (RiBezierBasis , 3, RiBezierBasis , 3);
RiDeclare (”foo”, ”uniform float”);
RiDeclare (”bar”, ”varying float”);
RiPatchMesh (”bicubic”, 7, ”nonperiodic”, 4, ”nonperiodic”,

”P”, (RtPointer )pts, ”foo”, (RtPointer )foos,
”bar”, (RtPointer )bars, RI NULL);

SEE ALSO

RiBasis , RiNuPatch , RiPatch

Non-uniform B-spline patches are also supported by the RenderMan Interface. Rational
quadratic B-splines provide exact representations of many different surfaces including gen-
eral quadrics, tori, surfaces of revolution, tabulated cylinders, and ruled surfaces.
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10 x 7 Aperiodic Bezier Bicubic Patch Mesh
3 x 2 Subpatches

4 x 3 Varying Variable Positions

9 x 5 U-Periodic Catmull-Rom Bicubic Patch Mesh
9 x 2 Subpatches

9 x 3 Varying Variable Positions

Figure 5.2: Patch Meshes
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NURBS may contain trim regions and holes that are specified by giving curves in parame-
ter space.

RiNuPatch ( RtInt nu, RtInt uorder, RtFloat uknot[], RtFloat umin, RtFloat umax,
RtInt nv, RtInt vorder, RtFloat vknot[], RtFloat vmin, RtFloat vmax,
...parameterlist...)

This procedure creates a tensor product rational or polynomial non-uniform B-spline
surface patch mesh. parameterlist is a list of token-array pairs where each token is
one of the standard geometric primitive variables or a variable that has been defined
with RiDeclare . The parameter list must include at least position (”P” or ”Pw”) infor-
mation.

The surface specified is rational if the positions of the vertices are 4-vectors (x,y,z,w),
and polynomial if the positions are 3-vectors (x,y,z). The number of control points in
the u direction equals nu and the number in the v direction equals nv. The total num-
ber of vertices is thus equal to (nu)*(nv). The order must be positive and is equal to
the degree of the polynomial basis plus 1. There may be different orders in each para-
metric direction. The number of control points should be at least as large as the order
of the polynomial basis. If not, a spline of order equal to the number of control points
is computed. The knot vectors associated with each control point (uknot[] , vknot[])
must also be specified. Each value in these arrays must be greater than or equal to
the previous value. The number of knots is equal to the number of control points plus
the order of the spline. The surface is defined in the range umin to umax and vmin to
vmax . This is different from other geometric primitives where the parameter values
are always assumed to lie between 0 and 1. Each min must be less than its max. min
must also be greater than or equal to the corresponding (order -1)th knot value. max
must be less than or equal to the nth knot value.

A NuPatch may be thought of as a nonperiodic uniform B-spline mesh with (1+nu−uorder )
segments in the u parametric direction, and (1+nv−vorder ) segments in the v para-
metric direction. RiNuPatch primitive variables are therefore defined to have one
uniform value per segment and one varying value per segment corner. The number
of uniform primitive variables is therefore nusegments × nvsegments, and the number
of varying variables is (nusegments+1) × (nvsegments+1). Note that this results in re-
dundant parameter values corresponding to repeated knot values, for instance when
the knot vector indicates the RiNuPatch is in Bezier form. Primitive variables of class
vertex contain nu × nv values of the appropriate type, and are interpolated using
the same methods as the surface position ”P”. Primitive variables that are of class
constant will have a single value for the entire mesh.

If texture coordinates primitive variables are not present, the current texture coordi-
nates are assigned to corners defined by the rectangle (umin,umax) and (vmin,vmax)
in parameter space.

RIB BINDING

NuPatch nu uorder uknot umin umax nv vorder vknot vmin vmax ...parameterlist...

EXAMPLE

NuPatch 9 3 [ 0 0 0 1 1 2 2 3 3 4 4 4 ] 0 4
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2 2 [ 0 0 1 1 ] 0 1
”Pw” [ 1 0 0 1 1 1 0 1 0 2 0 2

-1 1 0 1 -1 0 0 1 -1 -1 0 1
0 -2 0 2 1 -1 0 1 1 0 0 1
1 0 -3 1 1 1 -3 1 0 2 -6 2
-1 1 -3 1 -1 0 -3 1 -1 -1 -3 1
0 -2 -6 2 1 -1 -3 1 1 0 -3 1 ]

SEE ALSO

RiPatch , RiPatchMesh , RiTrimCurve

RiTrimCurve ( RtInt nloops, RtInt ncurves[], RtInt order[], RtFloat knot[],
RtFloat min, RtFloat max, RtInt n[], RtFloat u[], RtFloat v[], RtFloat w[] )

Set the current trim curve. The trim curve contains nloops loops, and each of these
loops contains ncurves curves. The total number of curves is equal to the sum of all
the values in ncurves. Each of the trimming curves is a non-uniform rational B-spline
curve in homogeneous parameter space (u,v,w). The curves of a loop connect in head-
to-tail fashion and must be explicitly closed. The arrays order, knot, min, max, n, u, v,
w contain the parameters describing each trim curve. All the trim curve parameters
are concatenated together into single large arrays. The meanings of these parameters
are the same as the corresponding meanings for a non-uniform B-spline surface.

Trim curves exclude certain areas from the non-uniform B-spline surface definition.
The inside must be specified consistently using two rules: an odd winding rule that
states that the inside consists of all regions for which an infinite ray from any point
in the region will intersect the trim curve an odd number of times, and a curve orien-
tation rule that states that the inside consists of the regions to the “left” as the curve
is traced.

Trim curves are typically used to specify boundary representations of solid models.
Since trim curves are approximations and not exact, some artifacts may occur at the
boundaries between intersecting output primitives. A more accurate method is to
specify solids using spatial set operators or constructive solid geometry (CSG). This
is described in the section on Solids and Spatial Set Operations, p. 93.

The list of Trim Curves is part of the attribute state, and may be saved and restored
using RiAttributeBegin and RiAttributeEnd .

RIB BINDING

TrimCurve ncurves order knot min max n u v w

The number of loops is determined implicitly by the length of the ncurves array.

EXAMPLE

RtInt nloops = 1;
RtInt ncurves[1] = { 1 };
RtInt order[1] = { 3 };
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RtFloat knot[12] = { 0,0,0,1,1,2,2,3,3,4,4,4 };
RtFloat min[1] = { 0 };
RtFloat max[1] = { 4 };
RtInt n[1] = { 9 };
RtFloat u[9] = { 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0 };
RtFloat v[9] = { 0.5, 1.0, 2.0, 1.0, 0.5, 0.0, 0.0, 0.0, 0.5 };
RtFloat w[9] = { 1.0, 1.0, 2.0, 1.0, 1.0, 1.0, 2.0, 1.0, 1.0 };
RiTrimCurve (nloops, ncurves, order, knot, min, max, n, u, v, w);

SEE ALSO

RiNuPatch , RiSolidBegin

5.3 Subdivision Surfaces

The RenderMan Interface includes support for subdivision surfaces. Ordinary cubic B-
spline surfaces are rectangular grids of tensor-product patches. Subdivision surfaces gen-
eralize these to control grids with arbitrary connectivity. The API for subdivision surfaces
looks a lot like RiPointsPolygons , with additional parameters to permit the specification
of scheme-specific and implementation-specific enhancements.

A subdivision surface, like a parametric surface, is described by its control mesh of points.
The surface itself can approximate or interpolate this control mesh while being piecewise
smooth. Furthermore, its control mesh is not confined to be rectangular, which is a major
limitation of NURBs and uniform B-splines. In this respect, the control mesh is analo-
gous to a polygonal description. But where polygonal surfaces require large numbers of
data points to approximate being smooth, a subdivision surface is smooth — meaning that
polygonal artifacts are never present, no matter how the surface animates or how closely it
is viewed.

RiSubdivisionMesh ( RtToken scheme, RtInt nfaces, RtInt nvertices[], RtInt vertices[],
RtInt ntags, RtToken tags[], RtInt nargs[],
RtInt intargs[], RtFloat floatargs[], ...parameterlist...)

RiSubdivisionMesh defines a subdivision mesh or surface obeying the subdivision
scheme specified by scheme. The only standard scheme is ”catmull-clark”, specifying
the Catmull-Clark subdivision method. Implementations may also support other
schemes. The subdivision mesh is made up of nfaces faces. The array nvertices,
of length nfaces, contains the number of vertices in each face. The array vertices
contains, for each face vertex, an index into the vertex primitive variable arrays. The
array vertices has a length equal to the sum of all the values in the array nvertices.
All the arrays are 0-based.
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parameterlist is a list of token-array pairs where each token is one of the standard
geometric primitive variables, a variable that has been defined with RiDeclare , or is
given as an inline declaration. The parameter list must include at least position (”P”)
information. If a primitive variable is vertex or varying, the array contains n elements
of the type corresponding to the token, where n is equal to the maximum value in
the array vertices plus one. Primitive variables that are vertex will be interpolated
according to the subdivision rules (just as ”P” is), whereas varying data will be in-
terpolated linearly across faces (as is done for a PointsPolygons ). If the variable is
uniform, the array contains nfaces elements of the associated type. If the variable is
constant, a single element of the associated type should be provided.

A component is either a face, a vertex, or a chain of edges. Components of the sub-
division mesh may be tagged by the user to have various implementation-specific
properties. The token array tags, of length ntags, identifies these tags. Each tag has
zero or more integer arguments, and zero or more floating-point arguments. The
number of arguments provided with each tag is specified by the array nargs, which
has a length of ntags × 2. For each tag, nargs contains an integer specifying the num-
ber of integer operands found in the array intargs, followed by an integer specifying
the number of floating-point operands found in the array floatargs. Thus, the length
of intargs is equal to the sum of all the even-numbered elements of the array nargs.
The length of floatargs is equal to the sum of all the odd-numbered elements of the
array nargs.

The standard tags are ”hole”, ”crease”, ”corner”, and ”interpolateboundary”.

The ”hole” tag specifies that certain faces are holes. This tag has n integer arguments,
one for each face that is a hole, and zero floating-point arguments. Each face is speci-
fied by its index in the nvertices array.

The ”crease” tag specifies that a certain chain of edges should be a sharp crease. This
tag has n integer arguments specifying a chain of vertices that make up the crease,
and one floating-point argument that is expected to be RI INFINITY. Each sequential
pair of vertices in a crease must be the endpoints of an edge of the subdivision mesh.
A mesh may have any number of independent ”crease” tags. Individual renderer im-
plementations may choose to expand the functionality of the ”crease” tag by making
use of tag values other than RI INFINITY.

The ”corner” tag may be used to mark certain vertices as sharp corners. This tag
has n integer arguments containing the vertex numbers of the corners and either
one or n floating-point arguments that are expected to be RI INFINITY. Individual
renderer implementations may choose to expand the functionality of the ”crease” tag
by making use of tag values other than RI INFINITY.

The ”interpolateboundary” tag specifies that the subdivision mesh should interpo-
late all boundary faces to their edges. This tag has zero integer arguments and zero
floating-point arguments. It has the same effect as specifying that all the boundary
edge-chains are sharp creases and that boundary vertices with exactly two incident
edges are sharp corners.

RIB BINDING

SubdivisionMesh scheme nvertices vertices tags nargs intargs floatargs ...parameterlist...

The number of faces is determined implicitly by the length of the nvertices array.
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The number of tags is determined implicitly by the length of the tags array, and must
match the value as determined from the nargs array.

EXAMPLE

SubdivisionMesh ”catmull-clark” [4 4 4 4 4 4 4 4 4] [ 0 4 5 1 1 5 6 2 2 6 7
3 4 8 9 5 5 9 10 6 6 10 11 7 8 12 13 9 9 13 14 10 10 14 15 11 ]
[”interpolateboundary”] [0 0] [0] [0] ”P” [-60 60 0 -60 20 0 -60
-20 0 -60 -60 0 -20 60 0 -20 20 45 -20 -20 45 -20 -60 0 20 60 0
20 20 45 20 -20 45 20 -60 0 60 60 0 60 20 0 60 -20 0 60 -60 0]

SEE ALSO

RiPointsPolygons

5.4 Quadrics

Many common shapes can be modeled with quadrics. Although it is possible to convert
quadrics to patches, they are defined as primitives because special-purpose rendering pro-
grams render them directly and because their surface parameters are not necessarily pre-
served if they are converted to patches. Quadric primitives are particularly useful in solid
and molecular modeling applications.

All the following quadrics are rotationally symmetric about the z axis (see Figure 5.3). In all
the quadrics u and v are assumed to run from 0 to 1. These primitives all define a bounded
region on a quadric surface. It is not possible to define infinite quadrics. Note that each
quadric is defined relative to the origin of the object coordinate system. To position them at
another point or with their symmetry axis in another direction requires the use a modeling
transformation. The geometric normal to the surface points “outward” from the z-axis, if
the current orientation matches the orientation of the current transformation and “inward” if
they don’t match. The sense of a quadric can be reversed by giving negative parameters.
For example, giving a negative thetamax parameter in any of the following definitions will
turn the quadric inside-out.

Each quadric has a parameterlist. This is a list of token-array pairs where each token is one
of the standard geometric primitive variables or a variable which has been defined with
RiDeclare . For all quadrics, primitive variables of class constant and uniform must supply
a single data element of the appropriate type. Primitive variables that are varying or vertex
must supply 4 data values, which will be interpolated bilinearly across the quadric surface.

Position variables should not be given with quadrics. All angular arguments to these func-
tions are given in degrees. The trigonometric functions used in their definitions are as-
sumed to also accept angles in degrees.

RiSphere ( RtFloat radius, RtFloat zmin, RtFloat zmax, RtFloat thetamax, ...parameterlist...)
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Requests a sphere defined by the following equations:

φmin =
{

asin
(

zmin
radius

)
if zmin > −radius

−90.0 if zmin ≤ −radius

φmax =
{

asin
(

zmax
radius

)
if zmax < radius

90.0 if zmax ≥ radius
φ = φmin + v · (φmax − φmin)
θ = u · thetamax
x = radius · cos(θ) · cos(φ)
y = radius · sin(θ) · cos(φ)
x = radius · sin(φ)

Note that if zmin > −radius or zmax < radius , the bottom or top of the sphere is
open, and that if thetamax is not equal to 360 degrees, the sides are also open.

RIB BINDING

Sphere radius zmin zmax thetamax ...parameterlist...
Sphere [radius zmin zmax thetamax ] ...parameterlist...

EXAMPLE

RiSphere (0.5, 0.0, 0.5, 360.0, RI NULL);

SEE ALSO

RiTorus

RiCone ( RtFloat height, RtFloat radius, RtFloat thetamax, ...parameterlist...)

Requests a cone defined by the following equations:

θ = u · thetamax
x = radius · (1− v) · cos(θ)
y = radius · (1− v) · sin(θ)
z = v · height

Note that the bottom of the cone is open, and if thetamax is not equal to 360 degrees,
the sides are open.

RIB BINDING

Cone height radius thetamax ...parameterlist...
Cone [height radius thetamax ] ...parameterlist...

EXAMPLE

RtColor four colors[4];
RiCone (0.5, 0.5, 270.0, ”Cs”, (RtPointer )four colors, RI NULL);

SEE ALSO

RiCylinder , RiDisk , RiHyperboloid

79



RiCylinder ( RtFloat radius, RtFloat zmin, RtFloat zmax, RtFloat thetamax,
...parameterlist...)

Requests a cylinder defined by the following equations:

θ = u · thetamax
x = radius · cos(θ)
y = radius · sin(θ)
z = v · (zmax − zmin)

Note that the cylinder is open at the top and bottom, and if thetamax is not equal to
360 degrees, the sides also are open.

RIB BINDING

Cylinder radius zmin zmax thetamax ...parameterlist...
Cylinder [radius zmin zmax thetamax ] ...parameterlist...

EXAMPLE

Cylinder .5 .2 1 360

SEE ALSO

RiCone , RiHyperboloid

RiHyperboloid ( RtPoint point1, RtPoint point2, RtFloat thetamax, ...parameterlist...)

Requests a hyperboloid defined by the following equations:

θ = u · thetamax
xr = (1− v)x1 + v · x2

yr = (1− v)y1 + v · y2

zr = (1− v)z1 + v · z2

x = xr · cos(θ)− yr · sin(θ)
y = xr · sin(θ) + yr · cos(θ)
z = zr

assuming that point1 = (x1, y1, z1) and point2 = (x2, y2, z2).

The cone, disk and cylinder are special cases of this surface. Note that the top and
bottom of the hyperboloid are open when point1 and point2, respectively, are not on
the z-axis. Also, if thetamax is not equal to 360 degrees, the sides are open.

RIB BINDING

Hyperboloid x1 y1 z1 x2 y2 z2 thetamax ...parameterlist...
Hyperboloid [x1 y1 z1 x2 y2 z2 thetamax ] ...parameterlist...

EXAMPLE
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Hyperboloid 0 0 0 .5 0 0 270 ”Cs” [1 1 1 .5 .9 1 .2 .9 0 .5 .2 0]

SEE ALSO

RiCone , RiCylinder , RiDisk

RiParaboloid ( RtFloat rmax, RtFloat zmin, RtFloat zmax, RtFloat thetamax,
...parameterlist...)

Requests a paraboloid defined by the following equations:

θ = u · thetamax
z = v · (zmax − zmin)

r = rmax ·
√
z/zmax

x = r · cos(θ)
y = r · sin(θ)

Note that the top of the paraboloid is open, and if thetamax is not equal to 360 de-
grees, the sides are also open.

RIB BINDING

Paraboloid rmax zmin zmax thetamax ...parameterlist...
Paraboloid [rmax zmin zmax thetamax ] ...parameterlist...

EXAMPLE

Paraboloid .5 .2 .7 270

SEE ALSO

RiHyperboloid

RiDisk ( RtFloat height, RtFloat radius, RtFloat thetamax, ...parameterlist...)

Requests a disk defined by the following equations:

θ = u · thetamax
x = radius · (1− v) · cos(θ)
y = radius · (1− v) · sin(θ)
z = height

Note that the surface normal of the disk points in the positive z direction when theta-
max is positive.

RIB BINDING

Disk height radius thetamax ...parameterlist...
Disk [height radius thetamax ] ...parameterlist...

EXAMPLE
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RiDisk (1.0, 0.5, 270.0, RI NULL);

SEE ALSO

RiCone , RiHyperboloid

RiTorus ( RtFloat majorradius, RtFloat minorradius, RtFloat phimin, RtFloat phimax,
RtFloat thetamax, ...parameterlist...)

Requests a torus defined by the following equations:

θ = u · thetamax
φ = phimin + (phimax − phimin)
r = minorradius · cos(φ)
z = minorradius · sin(φ)
x = (majorradius + r) · cos(θ)
y = (majorradius + r) · sin(θ)

Note that if phimax−phimin or thetamax is not equal to 360 degrees, the torus is open.

RIB BINDING

Torus rmajor rminor phimin phimax thetamax ...parameterlist...
Torus [rmajor rminor phimin phimax thetamax ] ...parameterlist...

EXAMPLE

Torus 1 .3 60 90 360

SEE ALSO

RiSphere

5.5 Point and Curve Primitives

The RenderMan Interface includes lightweight primitives for specifying point clouds, lines,
curves, or ribbons. These primitives are especially useful for representing many particles,
hairs, etc.

RiPoints ( RtInt npoints, ...parameterlist...)

Draws npoints number of point-like particles. parameterlist is a list of token-array
pairs where each token is one of the standard geometric primitive variables, a vari-
able that has been defined with RiDeclare , or is given as an inline declaration. The
parameter list must include at least position (”P”) information, one value for each
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particle. If a primitive variable is of class varying or vertex, the array contains npoints
data values of the appropriate type, i.e., one per particle. If the variable is uniform or
constant, the array contains a single element.

The size, in object space, of each particle can be specified in the parameter list by
using the primitive variable ”width”, which provides a varying float. If ”width” is not
specified in the parameter list then it will default to 1.0, meaning that all particles
should have an apparent diameter 1.0 units in object space. If all the points are of the
same size, the user may specify the variable ”constantwidth”, which is defined as type
constant float to supply a single width value for all points.

Each particle is treated independently. This means a particle is shaded only once and
does not have access to derivative information.

RIB BINDING

Points ...parameterlist...

The number of points is determined implicitly by the length of the ”P” array.

EXAMPLE

Points ”P” [.5 -.5 0 -.5 -5 0 -.5 .5 0 .5 .5 0] ”width” [.1 .12 .05 .02]

RiCurves ( RtToken type, RtInt ncurves, RtInt nvertices[], RtToken wrap, ...parameterlist...)

Draws ncurves number of lines, curves, or ribbon-like particles of specified width
through a set of control vertices. Multiple disconnected individual curves may be
specified using one call to RiCurves . The parameter ncurves is the number of indi-
vidual curves specified by this command, and nvertices is an array of length ncurves
integers specifying the number of vertices in each of the respective curves.

The interpolation method given by type can be either ”linear” or ”cubic”. Cubic curves
interpolate using the v basis matrix and step size set by RiBasis . The u parameter
changes across the width of the curve (if it has any discernable width), whereas the v
parameter changes across the length of the curve (i.e., the direction specified by the
control vertices). Curves may wrap around in the v direction, depending on whether
wrap is ”periodic” or ”nonperiodic”. Curves that wrap close upon themselves at the
ends and the first control points will be automatically repeated. As many as three
control points may be repeated, depending on the basis matrix of the curve.

parameterlist is a list of token-array pairs where each token is one of the standard
geometric primitive variables, a variable that has been defined with RiDeclare , or is
given as an inline declaration. The parameter list must include at least position (”P” or
”Pw”) information. The width along the curve may be specified with either a special
”width” parameter that is a varying float argument, or a ”constantwidth” parameter that
is a constant float (one value for the entire RiCurves ). Widths are specified in object
space units of the curve. If no ”width” vector or ”constantwidth” value is given, the
default width is 1.0 units in object space.

Primitive variables of class constant should supply a single value of the appropriate
type for the entire RiCurves . Primitive variables of class uniform should supply a
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total of ncurves values of the appropriate type. Primitive variables of class varying
should supply

∑
(nsegsi + 1) values for nonperiodic curves, and

∑
nsegsi values

for periodic curves, where nsegsi is the number of segments of the ith curve (see
below). Primitive variables of class vertex should supply

∑
nverticesi values of the

appropriate type, that is, one value for every control vertex ”P”.

The number of piecewise-linear or piecewise-cubic segments of each individual curve
is given by

nsegsi =


nverticesi − 1 for linear, nonperiodic curves
nverticesi for linear, periodic curves
nverticesi−4

vstep + 1 for cubic, nonperiodic curves
nverticesi

vstep for cubic, periodic curves

Since the control vertices only specify the direction of the “spine” of the curves, by
default the curves are assumed to always project a cross-section of the specified width
(as if it were a hair or a strand of spaghetti). However, if ”N” values are supplied, the
curves will be interpreted as “flat” ribbons oriented perpendicularly to the supplied
normals, thus allowing user-controlled rotation of the ribbon.

RIB BINDING

Curves type [nvertices] wrap ...parameterlist...

The number of curves is determined implicitly by the length of the nvertices array.

EXAMPLE

Curves ”cubic” [4] ”nonperiodic” ”P” [0 0 0 -1 -.5 1 2 .5 1 1 0 -1 ] ”width” [.1 .04]

Curves ”linear” [5] ”nonperiodic” ”P” [0 0 0 3 4 5 -1 -.5 1 2 .5 1 1 0 -1 ]
”constantwidth” [0.075]

SEE ALSO

RiBasis

5.6 Blobby Implicit Surfaces

The RenderMan Interface allows the use of free-form self-blending implicit-function sur-
faces in the style of Jim Blinn’s blobby molecules, Nishimura et al.’s metaballs and Wyvill,
McPheeters and Wyvill’s soft objects. Blobby surfaces may be composed of spherical and
sausage-like line-segment primitives with extremely flexible control over blending. The
surface type also provides for repulsion to avoid intersection with irregular ground planes,
represented by depth maps.

RiBlobby ( RtInt nleaf, RtInt ncode, RtInt code[], RtInt nfloats, RtFloat floats[],
RtInt nstrings, RtString strings[], ...parameterlist...)
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The code array is a sequence of machine language-like instructions describing the
object’s primitive blob fields and the operations that combine them. Floating point
parameters of the primitive fields are stored in the floats array. File names of the
depth files of repellers are in the strings array. The integer nleaf is the number of
primitive blobs in object, also the number of items in each varying or vertex param-
eter. Parameters with storage class constant or uniform have exactly one data value
for the entire RiBlobby primitive.

Each instruction has a numeric opcode followed by a number of operands. Instruc-
tions specifying primitive fields start at 1000 and are listed in Table 5.2.

Opcode Operands Operation
1000 float constant
1001 float ellipsoid
1002 float segment blob
1003 float, string repelling plane
1004-1099 reserved

Table 5.2: RiBlobby opcodes for primitive fields.

For all four of these operators, the operands are indices into the appropriate arrays.

For opcode 1000 (constant) the operand indexes a single floating-point number
in the floats array. The index of the first item in the array is zero.

•• For opcode 1001 (ellipsoid) the operand indexes the first of 16 floats describing
a 4x4 matrix that transforms the unit sphere into the ellipsoidal bump in object
space.

• The operand of opcode 1002 (segment blob) indexes 23 floats that give the end-
points and radius of the segment and a 4x4 matrix that transforms the segment
into object space.

• Opcode 1003 (repelling ground plane) takes two indices. The first gives the in-
dex of the name of a depth map in the strings array. The second indexes the first
of 4 float parameters of the repeller’s repulsion contour. The value of the field
generated by a repeller is a function of the vertical distance from the evaluation
point to the z-file, in the view direction in which the z-file was generated. The
four float parameters control the shape of the repelling field. Let’s call the four
parameters A, B, C and D. A controls the overall height of the repeller. The
field value is zero whenever the height above the ground plane is larger than A.
B controls the sharpness of the repeller. The field looks a lot like −B/z (except
that it fades to zero at z = A, and remains at a large negative value when z < 0),
so smaller values of B place the knee in the curve closer to z = 0. Added to
this negative-going barrier field is a bump that has its peak at z = C, and whose
maximum value is D. The bump component is exactly zero outside the range
0 ≤ z ≤ 2C.

There are several more opcodes that compute composite fields by combining the re-
sults of previous instructions in various ways. Every instruction in the code array has
a number, starting with zero for the first instruction, that when used as an operand
refers to its result. The combining opcodes are given in Table 5.3.
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Opcode Operands Operation
0 count, ... add
1 count, ... multiply
2 count, ... maximum
3 count, ... minimum
4 subtrahend, minuend subtract
5 dividend, divisor divide
6 negand negate
7 idempotentate identity
8-99 reserved

Table 5.3: RiBlobby opcodes for combining fields.

The add, multiply, maximum and minimum operations all take variable numbers of
arguments. The first argument is the number of operands, and the rest are indices of
results computed by previous instructions. The identity operator does nothing useful,
and is only included for the convenience of programs that automatically generate
RenderMan input.

RiBlobby primitives may be shaded much like ordinary parametric primitives, with
the caveat that just like subdivision surfaces, they have no global u and v parameters.
Nevertheless, they may be given vertex values by attaching scalar values or reference
coordinate fields to primitive sub-objects.

RIB BINDING

Blobby nleaf [ floats ] [ strings ] ...parameterlist...

The number of points is determined implicitly by the length of the ”P” array.

EXAMPLE

Blobby 2 [ 1001 0 1003 0 16 0 2 0 1 ]
[1.5 0 0 0 0 1.5 0 0 0 0 1.5 0 0 0 -.1 1 .4 .01 .3 .08] [”flat.zfile”]

5.7 Procedural Primitives

Procedural primitives can be specified as follows:

RiProcedural ( RtPointer data, RtBound bound,
RtProcSubdivFunc subdividefunc, RtProcFreeFunc freefunc )

This defines a procedural primitive. The data parameter is a pointer to an opaque
data structure that defines the primitive. (The rendering program does not “look
inside” data, it simply records it for later use by the procedural primitive.) bound
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is an array of floats that define the bounding box of the primitive in object space.
subdividefunc is the routine that the renderer should call (when necessary) to have
the primitive subdivided. A bucket-based rendering scheme can potentially save
memory space by delaying this call until the bounding box overlaps a bucket that
must be rendered. The calling sequence for subdividefunc is:

(*subdividefunc)( RtPointer data, RtFloat detail )

where data is the parameter that was supplied in defining the primitive, and detail
is the screen area of the bound of the primitive. When subdividefunc is called, it is
expected to subdivide the primitive into other smaller procedural primitives or into
any number of non-procedural primitives. If the renderer can not determine the true
detail of the bound (e.g., if the geometric primitive data is being archived to a file),
subdividefunc may be called with a detail value equal to RI INFINITY. This should be
interpreted by the subdividefunc as a request for the immediate full generation of the
procedural primitive.

freefunc is a procedure that the rendering program calls to free the primitive when
the data is no longer needed. The calling sequence for freefunc is:

(*freefunc)( RtPointer data )

Note that the rendering program may call back multiple times with the same proce-
dural primitive, so the data area should not be overwritten or freed until the freefunc
is called.

The RenderMan Interface provides three standard built-in procedural primitives.
Their declarations are:

RtVoid RiProcDelayedReadArchive (RtPointer data, RtFloat detail);
RtVoid RiProcRunProgram (RtPointer data, RtFloat detail);
RtVoid RiProcDynamicLoad (RtPointer data, RtFloat detail);

These built-in procedurals are the subdivide routines. All three may use the single
built-in free function:

RtVoid RiProcFree (RtPointer data);

The RiProcFree procedure simply calls the standard C free() routine on data. The
meanings of the standard built-in procedural types are explained below.

RIB BINDING

Procedural procname [args] [bound ]

The procedural name procname must be a built-in procedural, either one of the stan-
dard ones described below or an implementation-specific procedural. The args pa-
rameter is an array of strings supplying arguments to the built-in procedural. The
expected arguments for each type of procedural are explained in the following sec-
tions on those primitives.

EXAMPLE

RtString args[] = { ”sodacan.rib” };
RtBound mybound = { -1, 1, -1, 1, 0, 6 };
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RiProcedural ((RtPointer)args, mybound, RiProcDelayedReadArchive , RiProcFree);

Procedural ”DelayedReadArchive” [ ”sodacan.rib” ] [ -1 1 -1 1 0 6 ]

SEE ALSO

RiProcDelayedReadArchive , RiProcRunProgram , RiProcDynamicLoad

RiProcDelayedReadArchive ( RtPointer data, RtFloat detail )

The built-in procedural RiProcDelayedReadArchive operates exactly like ReadArchive ,
except that the reading is delayed until the procedural primitive bounding box is
reached (unlike ReadArchive , which reads RIB files immediately during parsing).
The advantage of the procedural primitive is that because the reading is delayed,
memory for the read primitives is not used unless (or until) the contents of the bound-
ing box are actually needed.

The data parameter consists of a pointer to an RtString array. The first element of the
array (that is, ((RtString *)data)[0]) is the name of a RIB file to read.

The file can contain any amount of valid RIB, although it is suggested that it either
be “flat” (have no hierarchy) or have some balanced hierarchy (matching Begin-End
calls). As with all RIB parameters that are bounding boxes, the boundingbox is an
array of six floating-point numbers, which are xmin, xmax, ymin, ymax, zmin, zmax in
the current object space.

RIB BINDING

Procedural ”DelayedReadArchive” [filename] [boundingbox ]

The argument string list contains a single string giving the filename the file to read
when the contents of the boundingbox are needed.

EXAMPLE

RtString args[] = { ”sodacan.rib” };
RtBound mybound = { -1, 1, -1, 1, 0, 6 };
RiProcedural ((RtPointer)args, mybound, RiProcDelayedReadArchive , RiProcFree);

Procedural ”DelayedReadArchive” [ ”sodacan.rib” ] [ -1 1 -1 1 0 6 ]

SEE ALSO

RiProcedural , RiProcRunProgram , RiProcDynamicLoad

RiProcRunProgram ( RtPointer data, RtFloat detail )

The built-in procedural RiProcRunProgram will run an external “helper program,”
capturing its output and interpreting it as RIB input. The data parameter consists
of a pointer to an RtString array. The first element of the array is the name of the
program to run (including any command line arguments), and the second element is
an argument string to be written to the standard input stream of the helper program.
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The helper program generates geometry on-the-fly in response to procedural prim-
itive requests in the RIB stream. Each generated procedural primitive is described
by a request to the helper program, in the form of an ASCII datablock that describes
the primitive to be generated. This datablock can be anything that is meaningful and
adequate to the helper program, such as a sequence of a few floating-point numbers,
a filename, or a snippet of code in an interpreted modeling language. In addition, the
renderer supplies the detail size of the primitive’s bounding box, so that the generat-
ing program can decide what to generate based on how large the object will appear
on-screen.

The generation program reads the request datablocks on its standard input stream
and emits RIB commands on its standard output stream. These RIB streams are read
into the renderer as though they were read from a file (as with ReadArchive ) and
may include any standard RenderMan attributes and primitives (including proce-
dural primitive calls to itself or other helper programs). As long as any procedural
primitives exist in the rendering database that require the same helper program for
processing, the socket connection to the program will remain open. This means that
the program should be written with a loop that accepts any number of requests and
generates a RIB “snippet” for each one.

RIB BINDING

Procedural ”ReadProgram” [programname datablock ] [boundingbox ]

The argument list is an array of two strings. The first element is the name of the helper
program to execute and may include command line options. The second element is
the generation-request data block. It is an ASCII printable string that is meaningful
to the helper program and describes the children to be generated. Notice that the
data block is a quoted ASCII string in the RIB file, so if it is a complex description
that contains quote marks or other special characters, these must be escaped in the
standard way. (Similar to C, using backslash metacharacters like \” and \n.) The
boundingbox is an array of six floating-point numbers, which is xmin, xmax, ymin,
ymax, zmin, zmax in the current object space.

EXAMPLE

RtString args[] = { ”perl gencan.pl”, ”” };
RtBound mybound = { -1, 1, -1, 1, 0, 6 };
RiProcedural ((RtPointer)args, mybound, RiProcRunProgram, RiProcFree);

Procedural ”RunProgram” [ ”perl gencan.pl” ”” ] [ -1 1 -1 1 0 6 ]

The example above presumes that you have a Perl script called gencan.pl that will
generate RIB for a model and write that RIB to its standard output stream.

SEE ALSO

RiProcedural , RiProcRunProgram , RiProcDynamicLoad

RiProcDynamicLoad ( RtPointer data, RtFloat detail )
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A more efficient method for accessing subdivision routines is to write them as dy-
namic shared objects (DSOs)1, and dynamically load them into the renderer executable
at run-time. In this case, you write your subdivision and free routines in C, exactly
as you would if you were writing them to be linked into the renderer using the C
RiProcedural interface. DSOs are compiled with special compiler options to make
them run-time loadable and are specified in the RIB file by the name of the shared
object file. The renderer will load the DSO the first time that the subdivision routine
must be called, and from then on, it is called as if (and executes as fast as if) it were
statically linked. DSOs are more efficient than external programs because they avoid
the overhead of interprocess communication.

When writing a procedural primitive DSO, you must create three specific public sub-
routine entry points, named Subdivide, Free, and ConvertParameters. Subdivide is a
standard RiProcedural() primitive subdivision routine, taking a blind data pointer to
be subdivided and a floating-point detail to estimate screen size. Free is a standard
RiProcedural primitive free routine, taking a blind data pointer to be released. Con-
vertParameters is a special routine that takes a string and returns a blind data pointer.
It will be called exactly once for each DynamicLoad procedural primitive in the RIB
file, and its job is to convert a printable string version of the progenitor’s blind data
(which must be in ASCII in the RIB file), into something that the Subdivide routine
will accept.

The C prototypes for these functions are as follows:

RtPointer ConvertParameters(char * initialdata );
void Subdivide(RtPointer blinddata, RtFloat detailsize );
void Free( RtPointer blinddata );

Note that if the DSO Subdivide routine wants to recursively create child procedu-
ral primitives of the same type as itself, it should specify a direct recursive call to
itself, with RiProcedural(newdata,newbound,Subdivide,Free), not call itself as a Dy-
namicLoad procedural. The latter would eventually just call the former after wasting
time checking for and reloading the DSO.

The conventions for how dynamic objects are compiled are implementation-dependent
(and also very likely OS-dependent).

RIB BINDING

Procedural ”DynamicLoad” [dsoname paramdata] [boundingbox ]

The argument list is an array of two strings. The first element is the name of the
shared object file that contains the three required entry points and has been com-
piled and prelinked as described earlier. The second element is the ASCII printable
string that represents the initial data to be sent to the ConvertParameters routine. The
boundingbox is an array of six floating-point numbers, which is xmin, xmax, ymin,
ymax, zmin, zmax in the current object space.

EXAMPLE

RtString args[] = { ”mydso.so”, ”” };
RtBound mybound = { -1, 1, -1, 1, 0, 6 };
RiProcedural ((RtPointer)args, mybound, RiProcDynamicLoad, RiProcFree);

1on some systems called dynamically linked libraries, or DLLs
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Procedural ”DynamicLoad” [ ”mydso.so” ”” ] [ -1 1 -1 1 0 6 ]

SEE ALSO

RiProcedural , RiProcDelayedReadArchive , RiProcRunProgram

5.8 Implementation-specific Geometric Primitives

Additional geometric primitives can be specified using the following procedure.

RiGeometry ( RtToken type, ...parameterlist...)

This procedure provides a standard way of defining an implementation-specific ge-
ometric primitive. The values supplied in the parameter list for each primitive is
implementation specific.

RIB BINDING

Geometry name ...parameterlist...

EXAMPLE

RiGeometry (”teapot”, RI NULL);

5.9 Solids and Spatial Set Operations

All of the previously described geometric primitives can be used to define a solid by brack-
eting a collection of surfaces with RiSolidBegin and RiSolidEnd . This is often referred
to as the boundary representation of a solid. When specifying a volume it is important that
boundary surfaces completely enclose the interior. Normally it will take several surfaces to
completely enclose a volume since, except for the sphere, the torus, and potentially a peri-
odic patch or patch mesh, none of the geometric primitives used by the rendering interface
completely enclose a volume. A set of surfaces that are closed and non-self-intersecting un-
ambiguously defines a volume. However, the RenderMan Interface performs no explicit
checking to ensure that these conditions are met. The inside of the volume is the region or
set of regions that have finite volume; the region with infinite volume is considered outside
the solid. For consistency the normals of a solid should always point outwards.
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RiSolidBegin ( RtToken operation )

RiSolidEnd ()

SolidBegin the definition of a solid. operation may be one of the following to-
kens: ”primitive”, ”intersection”, ”union”, ”difference”. Intersection and union opera-
tions form the set intersection and union of the specified solids. Difference opera-
tions require at least 2 parameter solids and subtract the last n-1 solids from the first
(where n is the number of parameter solids).

When the innermost solid block is a ”primitive” block, no other RiSolidBegin calls
are legal. When the innermost solid block uses any other operation, no geometric
primitives are legal.

RiSolidEnd terminates the definition of the solid.

RIB BINDING

SolidBegin operation
SolidEnd -

EXAMPLE

SolidBegin ”union”

SEE ALSO

RiInterior , RiTrimCurve

A single solid sphere can be created using

SolidBegin ( ”primitive” );
RiSphere ( 1.0, -1.0, 1.0, 360.0, RI NULL);

RiSolidEnd ();

Note that if the same sphere is defined outside of a RiSolidBegin -RiSolidEnd block, it is
not treated as a volume-containing solid. A solid hemisphere can be created with

SolidBegin ( ”primitive” );
RiSphere ( 1.0, 0.0, 1.0, 360.0, RI NULL);
RiDisk ( 0.0, 1.0, -360.0, RI NULL);

RiSolidEnd ();

(Note that the -360 causes the surface normal of the disk to point towards negative z.)

A composite solid is one formed using spatial set operations. The allowed set operations
are ”intersection”, ”union”, and ”difference”. A spatial set operation has n operands, each of
which is either a primitive solid defined using SolidBegin (”primitive”)-RiSolidEnd , or a
composite solid that is the result of another set operation. For example, a closed cylinder
would be subtracted from a sphere as follows:
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SolidBegin ( ”difference” );
SolidBegin ( ”primitive” );

RiSphere ( 1.0, -1.0, 1.0, 360.0, RI NULL);
RiSolidEnd ();
SolidBegin ( ”primitive” );

RiDisk ( 2.0, 0.5, 360.0, RI NULL);
RiCylinder ( 0.5, -2.0, 2.0, 360.0, RI NULL);
RiDisk ( -2.0, 0.5, -360.0, RI NULL);

RiSolidEnd ();
RiSolidEnd ();

When performing a difference the sense of the orientation of the surfaces being subtracted
is automatically reversed.

Attributes may be changed freely inside solids. Each section of a solid’s surface can have
a different surface shader and color. For consistency a single solid should have a single
interior and exterior volume shader.

If the Solid Modeling optional capability is not supported by a particular implementation, all
primitives are rendered as a collection of surfaces, and the spatial set operators are ignored.

5.10 Retained Geometry

A single geometric primitive or a list of geometric primitives may be retained by enclosing
them with RiObjectBegin and RiObjectEnd . The RenderMan Interface allocates and re-
turns an RtObjectHandle for each retained object defined in this way. This handle can sub-
sequently be used to reference the object when creating instances with RiObjectInstance .
Objects are not rendered when they are defined within an RiObjectBegin -RiObjectEnd
block; only an internal definition is created.

Transformations, and even Motion blocks, may be used inside an Object block, though
they obviously imply a relative transformation to the coordinate system active when the
Object is instanced. All of an object’s attributes are inherited at the time it is instanced, not
at the time at which it is created. So, for example, shader assignments or other attributes
are not allowed within an Object block. The only exception is RiBasis , which may set the
interpolation basis matrix used for RiPatch , RiPatchMesh , or RiCurves primitives that
are within the Object block.

RtObjectHandle
RiObjectBegin ()

RiObjectEnd ()

RiObjectBegin starts the definition of an object and return a handle for later use with
RiObjectInstance . If the handle returned is NULL, an object could not be created.

RiObjectEnd ends the definition of the current object.

RIB BINDING
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ObjectBegin sequencenumber

ObjectEnd -

The sequencenumber is a unique object identification number which is provided
by the RIB client to the RIB server. Both client and server maintain independent
mappings between the sequencenumber and their corresponding RtObjectHandle s.
If sequencenumber has been used to define a previous object, that object is replaced
with the new definition. The number must be in the range 0 to 65535.

EXAMPLE

ObjectBegin 2
Sphere 1 -1 1 360

ObjectEnd

SEE ALSO

RiFrameEnd , RiObjectInstance , RiWorldEnd

RiObjectInstance ( RtObjectHandle handle )

Create an instance of a previously defined object. The object inherits the current set of
attributes defined in the graphics state.

RIB BINDING

ObjectInstance sequencenumber

The object must have been defined to have a handle sequencenumber with a previ-
ous RiObjectBegin .

EXAMPLE

ObjectInstance 2

SEE ALSO

RiFrameEnd , RiObjectBegin , RiWorldEnd
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Section 6

MOTION

Some rendering programs are capable of performing temporal antialiasing and motion
blur. Motion blur is specified through moving transformations and moving geometric prim-
itives. Appearance parameters, such as color, opacity, and shader variables can also be
changed during a frame. To specify objects that vary over time several copies of the same
object are created, each with different parameters at different times within a frame. The
times that actually contribute to the motion blur are set with the RiShutter command. Pa-
rameter values change linearly over the intervals between knots. There is no limit to the
number of time values associated with a motion-blurred primitive, although two is usually
sufficient.

Rigid body motions and other transformation-based movements are modeled using mov-
ing coordinate systems. Moving coordinate systems are created by giving a sequence of
transformations at different times and can be concatenated and nested hierarchically. All
output primitives are defined in the current object coordinate system and, if that coordi-
nate system is moving, the primitives will also be moving. The extreme case is when the
camera is moving, since then all objects in the scene appear to be moving. Moving lights
also are handled by placing them in a moving coordinate system. Deforming geometric
primitives can also be modeled by giving their parameters at different times.

Moving geometry is created by bracketing the definitions at different times between RiMo-
tionBegin and RiMotionEnd calls.

RiMotionBegin ( RtInt n, RtFloat t0, RtFloat t1,..., RtFloat tnminus1 )

RiMotionEnd ()
RiMotionBegin starts the definition of a moving primitive. n is the number of time
steps associated with this moving primitive. The times should be in increasing or-
der. Only one type of RenderMan Interface command can be executed within this
sequence and only numerical values may be interpolated.

RiMotionEnd terminates the definition of the moving primitive.

RIB BINDING

MotionBegin [ t0 t1... tn-1 ]
MotionEnd -

SEE ALSO
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RiShutter

For example, assume the following list of commands creates a static translated sphere:

RtFloat Kd = 0.8;
RiSurface ( ”leather”, ”Kd”, (RtPointer )&Kd, RI NULL );
RiTranslate ( 1., 2., 3. );
RiSphere ( 1., -1., 1., 360., RI NULL );

To create a moving, deforming sphere with changing surface qualities, the following might
be used:

RtFloat Kd[] = { 0.8, 0.7 };
RiMotionBegin ( 2, 0., 1. );

RiSurface ( ”leather”, ”Kd”, (RtPointer )Kd, RI NULL );
RiSurface ( ”leather”, ”Kd”, (RtPointer )(Kd+1), RI NULL );

RiMotionEnd ();
RiMotionBegin ( 2, 0., 1. );

RiTranslate ( 1., 2., 3. );
RiTranslate ( 2., 3., 4. );

RiMotionEnd ();
RiMotionBegin ( 2, 0., 1. );

RiSphere ( 1., -1., 1., 360., RI NULL );
RiSphere ( 2., -2., 2., 360., RI NULL );

RiMotionEnd ();

Table 6.1, Moving Commands, shows which commands may be specified inside a RiMotionBegin -
RiMotionEnd block. If the Motion Blur capability is not supported by a particular imple-
mentation, only the transformations, geometry and shading parameters from t0 are used
to render each moving object.
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Transformations Geometry Shading
RiTransform RiBound RiColor
RiConcatTransform RiDetail RiOpacity

RiPerspective RiPolygon RiLightSource
RiTranslate RiGeneralPolygon RiAreaLightSource
RiRotate RiPointsPolygons
RiScale RiPointsGeneralPolygons RiSurface
RiSkew RiPatch RiInterior

RiPatchMesh RiExterior
RiProjection RiNuPatch RiAtmosphere
RiDisplacement RiSphere
RiDeformation RiCone

RiCylinder
RiHyperboloid
RiParaboloid
RiDisk
RiTorus
RiPoints
RiCurves
RiSubdivisionMesh
RiBlobby

Table 6.1: Moving Commands
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Section 7

EXTERNAL RESOURCES

7.1 Texture Map Utilities

The format of the various texture map files is implementation dependent. However, there
are standard utilities that convert image files into texture map files.

During two-dimensional texture access, texture coordinates (s, t) are mapped onto the tex-
ture such that s=0 maps to xmin, s=1 maps to xmax+1, t=0 maps to ymin, and t=1 maps to
ymax+1. To be precise, all accesses to the half-open interval [0,1) in s and t will lie within
the picture data.

A wrapmode describes how the texture is accessed if the texture coordinates are outside the
unit square (less than zero, or greater than or equal to one). The swrap and twrap strings
specify the wrapping behavior of the s and t coordinates. The standard wrapping behav-
ior for s and t, ”black”, is to return the value zero for all accesses outside the unit square.
(Thus an RGBa texture will be transparent black, zero on all four channels.) The keyword
”periodic” indicates that values of s (or t) outside [0,1) will be mapped into [0,1) by subtract-
ing the largest integer less than or equal to the coordinate (the “floor” of the coordinate).
This will wrap the value 1 back to 0, the value 1.25 to 0.25, and the value -0.1 to 0.9. The
result will be to repeat the texture as a tile that fills texture space in the s (or t) direction.
The keyword ”clamp” indicates that values of s (or t) outside [0,1) will be mapped into [0,1)
by clamping them at their minimum and maximum values. All values below zero will
be clamped to zero and all values greater than or equal to one will be clamped to a value
slightly less than one (at the last texture pixel).

Textures are often prefiltered so that subsequent antialiasing calculations can be done more
quickly at run-time. This is controlled by giving a filterfunc, which is the same as the filter-
func used in RiPixelFilter , and an swidth and twidth.

7.1.1 Making texture maps

Surface textures are used to modify the properties of a surface, such as color and opacity.
A surface texture is accessed using the surface texture coordinates (see the section on Tex-
ture coordinates) or any other two-dimensional coordinates computed by a user-defined
shader. A surface texture consists of one or more channels. A single channel or a group of n
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channels (usually an RGB color) can be accessed using the texture function of the Shading
Language. The texture function requires the name of a texture file containing the texture.

RiMakeTexture ( char *picturename, char *texturename, RtToken swrap, RtToken twrap,
RtFilterFunc filterfunc, RtFloat swidth, RtFloat twidth, ...parameterlist...)

Convert an image in a standard picture file whose name is picturename into a texture
file whose name is texturename. All channels of the picture file will be converted (in
order) to texture channels. The storage format of the texture file and the precision of
stored texture channels are implementation-dependent.

The picture file used as input is not changed or otherwise affected by RiMakeTexture .

RIB BINDING

MakeTexture picturename texturename swrap twrap filter swidth twidth ...parameterlist...

The filter parameter should be one of ”box”, ”triangle”, ”catmull-rom”, ”b-spline”, ”gaus-
sian” and ”sinc”. These correspond to the predefined filter functions described in
RiPixelFilter .

EXAMPLE

RiMakeTexture (”globe.pic”, ”globe.tx”, ”periodic”, ”clamp”,
RiGaussianFilter , 2.0, 2.0, RI NULL);

SEE ALSO

RiTextureCoordinates , texture() in the Shading Language

7.1.2 Making environment maps

Environment maps are images representing the color of an environment in a particular
direction. An environment map is accessed using a direction vector; this vector is often
the direction of a mirror reflection and hence environment maps are often referred to as
reflection maps. However, any direction can be computed by a user-defined shader. An
environment map image consists of one or more channels. A single channel or a group of
n channels (usually an RGB color) can be accessed using the environment function in the
Shading Language. Environment maps can be input in two formats. The first is as a single
latitude-longitude image. Environment maps in this form are fairly easy to create using a
paint system. The second format is a set of six cube face projections. Environment maps in
this form are naturally created by the rendering program.

RiMakeLatLongEnvironment ( char *picturename, char *texturename,
RtFilterFunc filterfunc, RtFloat swidth, RtFloat twidth, ...parameterlist...)
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Convert an image in a standard picture file representing a latitude-longitude map
whose name is picturename into an environment map whose name is texturename.
The storage format of the texture file and the precision of stored texture channels are
implementation-dependent.

This image has longitude equal to 0 degrees at the left, and 360 degrees at the right.
The latitude at the bottom is -90 degrees and at the top is 90 degrees. The bottom
of the picture is at the south pole and the top the north pole. The direction in space
corresponding to each of the points on the image is given by:

x = cos(longitude) · cos(latitude)
y = sin(longitude) · cos(latitude)
z = sin(latitude)

Notice that latitude-longitude environment maps are sensitive to the handedness of
the coordinate system in which they will be accessed. Environment maps which
are intended to be accessed in a right-handed coordinate system will, if displayed,
appear as a mirror image of those intended to be accessed in a left-handed coordinate
system.

RIB BINDING

MakeLatLongEnvironment picturename texturename filter swidth twidth ...parameterlist...

The filter parameter should be one of ”box”, ”triangle”, ”catmull-rom”, ”b-spline”, ”gaus-
sian” and ”sinc”. These correspond to the predefined filter functions described with
RiPixelFilter .

EXAMPLE

MakeLatLongEnvironment ”long.pic” ”long.tx” ”catmull-rom” 3 3

SEE ALSO

RiMakeCubeFaceEnvironment , environment() in the Shading Language

RiMakeCubeFaceEnvironment ( char *px, char *nx, char *py, char *ny, char *pz, char *nz,
char *texturename, RtFloat fov, RtFilterFunc filterfunc,
RtFloat swidth, RtFloat twidth, ...parameterlist...)

Convert six images in standard picture files representing six viewing directions into
an environment map whose name is texturename. The image pz (nz) is the image as
viewed in the positive (negative) z direction. The remaining images are those viewed
along the positive and negative x and y directions. The storage format of the texture
file and the precision of stored texture channels are implementation-dependent.

Each image is normally produced by a rendering program by placing the eye at the
center of the environment (usually the origin) and generating a picture in each of the
six directions. These pictures are the projection of the environment onto a set of cube
faces. Each face is usually assumed to be unit distance from the eye point. Cube face
environment maps should be generated with the following orientations:
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Image Forward Axis Up Axis Right Axis
px +X +Y -Z
nx -X +Y +Z
px +Y -Z +X
nx -Y +Z +X
px +Z +Y +X
nx -Z +Y -X

Notice that cube face environment maps are sensitive to the handedness of the coor-
dinate system in which they will be accessed. Environment maps which are intended
to be accessed in a right-handed coordinate system will, if displayed, appear as a
mirror image of those intended to be accessed in a left-handed coordinate system.

The fov is the full horizontal field of view used to generate these images. A value
of 90 degrees will cause the cube face edges to meet exactly. Using a slightly larger
value will cause the cube faces to intersect. Having a slight overlap helps remove
artifacts along the seams where the different pictures are joined.

RIB BINDING

MakeCubeFaceEnvironment px nx py ny pz nz texturename fov filter swidth twidth
...parameterlist...

The filter parameter should be one of ”box”, ”triangle”, ”catmull-rom”, ”b-spline”, ”gaus-
sian” and ”sinc”. These correspond to the predefined filter functions described with
RiPixelFilter .

EXAMPLE

RiMakeCubeFaceEnvironment (”foo.x”, ”foo.nx”, ”foo.y”, ”foo.ny”,
”foo.z”, ”foo.nz”, ”foo.env”, 95.0,
RiTriangleFilter , 2.0, 2.0, RI NULL);

SEE ALSO

RiMakeLatLongEnvironment , environment() in the Shading Language

7.1.3 Making shadow maps

Shadow maps are depth buffer images from a particular view. They are generally used in
light source shaders to cast shadows onto objects. A shadow map is accessed by point in
the camera coordinate system corresponding to that view. This point must be computed
in the shader. A shadow map texture can be accessed using the shadow function of the
Shading Language. The shadow function requires the name of a texture file containing the
texture.

RiMakeShadow ( char *picturename, char *texturename, ...parameterlist...)
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Create a depth image file named picturename into a shadow map whose name is
texturename. The storage format of the shadow map texture file and the precision of
stored texture channels are implementation-dependent.

RIB BINDING

MakeShadow picturename texturename ...parameterlist...

EXAMPLE

MakeShadow ”shadow.pic” ”shadow.tex”

SEE ALSO

shadow() in the Shading Language

7.2 Errors

RenderMan Interface procedures do not return error status codes. Instead, the user may
specify an error handling routine that will be called whenever an error is encountered.

RiErrorHandler ( RtErrorHandler handler )

This procedure sets the error handling procedure invoked by the renderer when an
error is detected. Error handling procedures have the following form:

RtVoid handler ( RtInt code, RtInt severity, char *message )

code indicates the type of error, and severity indicates how serious the error is. Val-
ues for code and severity are defined in ”ri.h”. The message is a character string
containing an error message formatted by the renderer which can be printed or dis-
played, as the handler desires.

The following standard error handlers are defined:

RtVoid RiErrorIgnore ;
RtVoid RiErrorPrint ;
RtVoid RiErrorAbort ;
RtInt RiLastError ;

If RiErrorIgnore is specified, all errors are ignored and no diagnostic messages are
generated. If RiErrorPrint is specified, a diagnostic message is generated for each
error. The rendering system will attempt to ignore the erroneous information and
continue rendering. If RiErrorAbort is specified, the first error will cause a diagnos-
tic message to be generated and the rendering system will immediately terminate.
Each of the standard error handlers saves the last error code in the global variable
RiLastError . This procedure can be called outside an RiBegin -RiEnd block.

RIB BINDING
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ErrorHandler ”ignore”
ErrorHandler ”print”
ErrorHandler ”abort”

If ”ignore”, ”print”, or ”abort” is specified, the equivalent predefined error handling
procedure will be invoked in the RIB server. Notice that the RIB parser process may
detect RIB stream syntax errors which make it impossible to correctly parse a request.
In this case, the error procedure will be invoked and the parser will do its best to
resynchronize the input stream by scanning for the next recognizable token.

EXAMPLE

ErrorHandler ”ignore”

7.3 Archive Files

One important use of the RIB protocol is to store a scene description in an archive file for
rendering at a later time or in a remote location from the modeling application. Appendix
D, RenderMan Interface Bytestream Conventions, outlines a structuring conventions to
make these archives as portable and useful as possible.

RiArchiveRecord ( RtToken type, char *format [, arg ...] )

This call writes a user data record (data which is outside the scope of the requests
described in the rest of Part I of this document) into a RIB archive file or stream.
type is one of ”comment”, or ”structure”, or ”verbatim”. ”comment” begins the user
data record with a RIB comment marker and terminates it with a newline. ”structure”
begins the user data record with a RIB structuring convention preface and terminates
it with a newline. ”verbatim” just outputs the data as-is, with no leading comment
character and no trailing newline. The user data record itself is supplied as a printf()
format string with optional arguments. It is an error to embed newline characters in
the format or any of its string arguments.

RiReadArchive ( RtToken name, RtVoid (*callback)(RtToken ,char*,...), ...parameterlist...)

This function will read the named file. Each RIB command in the archive will be
parsed and executed exactly as if it had been called by the application program di-
rectly, or been in-line in the calling RIB file, as the case may be. This is essentially a
RIB-file include mechanism.

In the C API version, the callback parameter is a function which will be called for any
RIB user data record or structure comment which is found in the file. This routine
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has the same prototype as RiArchiveRecord , and allows the application routine to
notice user data records and then execute special behavior based on them as the file
is being read into the renderer. If a NULL value is passed for callback , comments and
structures in the RIB file will simply be ignored.

RIB BINDING

ReadArchive filename

EXAMPLE

ReadArchive ”sodacan.rib”

SEE ALSO

RiArchiveRecord
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Section 8

INTRODUCTION TO THE SHADING LANGUAGE

Remarkably realistic images can be produced with a few fairly simple shapes made from
interesting materials and lighted in a natural way. Creating a photorealistic image requires
the specification of these material and lighting properties. This part of the document de-
scribes the Shading Language, which is used to write custom shading and lighting proce-
dures called shaders. Providing a language allows a user to extend shading models or to
create totally new ones. Models of light sources with special lenses, concentrators, flaps or
diffusers can be created. The physics of materials can be simulated or special materials can
be created. This is done by modeling the interaction of light at the surface and in the inte-
rior of a region of space. Material types can also be combined, simulating the many coats of
paint or finish applied to a surface. Providing a shading language also allows many of the
tricks and shortcuts commonly performed during production rendering to be accommo-
dated without destroying the conceptual integrity of the shading calculations. Visualizing
the results of scientific simulations is also easier because shaders can be written that pro-
duce a surface color that is based directly on the results of a computation. For example, it
is possible to write a shader that sets the surface color based on temperature and surface
curvature. Shaders can also be used to modify the final pixel values before they are written
to the display.

The Shading Language is a C-like language with extensions for handling color and point
data types. A large number of trigonometric and mathematical functions, including inter-
polation and noise functions, are provided. Color operators are provided that simulate the
mixing and filtering of light. Point and vector operators perform common geometric oper-
ations such as dot and cross product. A collection of commonly used geometric functions
is also provided. These include functions to transform points to specific coordinate sys-
tems. Common lighting and shading formulas, such as ambient, diffuse, specular, or phong,
are available as built-in functions. Built-in texture access functions return values from im-
ages representing texture maps, environment maps, and shadow depth maps. The texture
coordinates given to these functions can be either the presupplied texture coordinates or
values computed in the Shading Language. Since texture map values are just like any other
value in the language, they can be used to control any aspect of the shading calculation.
There is in principle no limit to the number of texture maps per surface.

The Shading Language can be used for specifying surface displacement functions such as
ripples or nubs. Shading Language functions are also used for pixel operations. This type
of shader is referred to as an imager. Imagers are used to do special effects processing, to
compensate for non-linearities in display media, and to convert to device dependent color
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spaces (such as CMYK or pseudocolor).
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Section 9

OVERVIEW OF THE SHADING PROCESS

In this document, shading includes the entire process of computing the color of a point on a
surface or at a pixel. The shading process requires the specification of light sources, surface
material properties, volume or atmospheric effects, and pixel operations. The interpolation of
color across a primitive, in the sense of Gouraud or Phong interpolation, is not considered
part of the shading process. Each part of the shading process is controlled by giving a
function which mathematically describes that part of the shading process. Throughout this
document the term shader refers to a procedure that implements one of these processes.
There are thus five major types of shaders:

• Light source shaders. Lights may exist alone or be attached to geometric primitives. A
light source shader calculates the color of the light emitted from a point on the light
source towards a point on the surface being illuminated. A light will typically have a
color or spectrum, an intensity, a directional dependency and a fall-off with distance.

• Displacement shaders. These shaders change the position and normals of points on the
surface, in order to place bumps on surfaces.

• Surface shaders. Surface shaders are attached to all geometric primitives and are
used to model the optical properties of materials from which the primitive was con-
structed. A surface shader computes the light reflected in a particular direction by
summing over the incoming light and considering the properties of the surface

• Volume shaders. Volume shaders modulate the color of a light ray as it travels through
a volume. Volumes are defined as the insides of solid objects. The atmosphere is the
initial volume defined before any objects are created.

• Imager shader. Imager shaders are used to program pixel operations that are done
before the image is quantized and output.

Conceptually, it is easiest to envision the shading process using ray tracing (see Figure 9.1).
In the classic recursive ray tracer, rays are cast from the eye through a point on the image
plane. Each ray intersects a surface which causes new rays to be spawned and traced
recursively. These rays are typically directed towards the light sources and in the directions
of maximum reflection and transmittance. Whenever a ray travels through space, its color
and intensity is modulated by the volume shader attached to that region of space. If that
region is inside a solid object, the volume shader is the one associated with the interior of
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Figure 9.1: The ray tracing paradigm

that solid; otherwise, the exterior shader of the spawning primitive is used. Whenever an
incident ray intersects a surface, the surface shader attached to that geometric primitive is
invoked to control the spawning of new rays and to determine the color and intensity of the
incoming or incident ray from the color and intensity of the outgoing rays and the material
properties of the surface. Finally, whenever a ray is cast to a light source, the light source
shader associated with that light source is evaluated to determine the color and intensity
of the light emitted. The shader evaluation pipeline is illustrated in Figure 9.2.

This description of the shading process in terms of ray tracing is done because ray tracing
provides a good metaphor for describing the optics of image formation and the properties
of physical materials. However, the Shading Language is designed to work with any ren-
dering algorithm, including scanline and z-buffer renderers, as well as radiosity and other
global illumination programs.
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113



Section 10

RELATIONSHIP TO THE RENDERMAN INTERFACE

The Shading Language is designed to be used with the RenderMan Interface described
in Part I of this document. This interface is used by modeling systems to describe scenes
to a rendering system. Like most graphics systems, the RenderMan Interface maintains a
current graphics state. This state contains all the information needed to render a geometric
primitive.

The graphics state contains a set of attributes that are attached to the surface of each geo-
metric primitive. These shading attributes include the current color (set with RiColor and
referred to as Cs) and current opacity (set with RiOpacity and referred to as Os). The ge-
ometric primitive also contains a current surface shader (RiSurface ) and several volume
shaders: the current atmosphere shader (RiAtmosphere ), current interior shader (RiInterior )
and a current exterior shader (RiExterior ). All geometric primitives use the current surface
shader for computing the surface shading at their surfaces. Light directed toward the
viewer is attenuated with the current atmosphere shader. If the surface shader of a primi-
tive causes rays to be traced (with the trace() function), the ray color will be attenuated
with either the current exterior shader or current interior shader, depending on whether the
traced ray is in the direction of, or opposite to, the surface normal.

The graphics state also contains a current list of light sources that contains the light sources
that illuminate the geometric primitives. Light sources may be added to or removed from
this list using RiIlluminate . Light sources can be attached to geometric primitives to define
area light sources (RiAreaLightSource ) or procedurally define their geometric properties
(RiLightSource ). The current area light source contains a list of geometric primitives that
define its geometry. Defining a geometric primitive adds that primitive to this list.

The graphics state also maintains the current transformation that is the transformation corre-
sponding to the modeling hierarchy. The graphics state also contains a current displacement
shader (RiDisplacement ) and an imager (RiImager ).

The RenderMan Interface predefines standard shaders for light sources, surfaces, and vol-
umes. These standard shaders are available in all rendering programs that implement the
RenderMan Interface, even if some algorithmic limitation prevents them from supporting
programmable shaders. Standard and implementation-dependent shaders should always
be specified in the Shading Language, even if they are built in. The predefined shaders
provided by the Shading Language are listed in Table 10.1, Standard Shaders. There is also
a null shader that is used as a placeholder. Shading Language definitions for these shaders
are given in Appendix A.
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Type Shader
Light sources ambientlight

distantlight
pointlight
spotlight

Surfaces constant
matte
metal
shinymetal
plastic
paintedplastic

Atmosphere fog
depthcue

Displacement bumpy
Imager background

Table 10.1: Standard Shaders

Shaders contain instance variables that customize a particular shader of that type. For a
surface shader these variables may denote material properties; for a light source shader
these variables may control its intensity or directional properties. All instance variables
have default values that are specified in the definition of the shader. When a shader is
added to the graphics state, these default values may be overridden by user-supplied val-
ues. This is done by giving a parameter list consisting of name-value pairs. The names in
this list are the same as the names of the instance variables in the shader definition. Note
that many different versions of the same shader can be instanced by giving different val-
ues for its instance variables. The instance variables associated with a shader effectively
enlarge the current graphics state to include new appearance attributes. Because the at-
tributes in the graphics state are so easily extended in this way, the number of “built-in” or
“predefined” shading-related variables in the graphics state has been kept to a minimum.

There are several steps involved in using a shader defined in the Shading Language. First,
a text file containing the source for the shader is created and edited. Second, this file is
then compiled using the Shading Language compiler to create an object file. Third, the
object file is placed in a standard place to make it available to the renderer. At this point, a
shader programmed in the Shading Language is equivalent to any other shader used by the
system. When a RenderMan Interface command involving a programmed shader (that is,
one that is not built-in) is invoked, the shader is looked up by name in the table of available
shaders, read into the rendering program, and initialized. This shader is then instanced
using the instance variables supplied in the RenderMan Interface procedure. Finally, when
a geometric primitive is being shaded, the shaders associated with it are executed.
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Section 11

TYPES

The Shading Language is strongly typed and supports the following basic types:

11.1 Floats

Floats are used for all scalar calculations. They are also used for integer calculations.

Floating-point variables are defined as follows:

float a, b=1;

The initialization value may be any scalar expression.

11.2 Colors

The Shading Language implements color as an abstract data type independent of the num-
ber of samples and the color space. The major operations involving color are color addition
(‘+’ operator) corresponding to the mixing of two light sources, and color filtering (‘*’ op-
erator) corresponding to the absorption of light by a material. In each case these color
operations proceed on a component by component basis.

The number of color samples used in the rendering program is set through the RenderMan
Interface. Once the number of color samples has been specified, colors with the appropriate
number of samples must be passed to a shader. When setting the number of samples, the
user can also specify a transformation from RGB space to this n sample color space. This
allows a shader to convert color constants to the specified color space.

Color component values of 0 correspond to minimum intensity, while values of 1 corre-
spond to maximum intensity. A color constant of 0 is equivalent to black, and of 1 is
equivalent to white. However, values outside that range are allowed (values less than
zero decrement intensity from other sources). Note that if you are using a color variable to
represent reflectivity, only component values between 0 and 1 are physically meaningful,
whereas color variables that represent radiance may be unbounded.

Color variables may be declared with:
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color c, d=1, e=color(1,0,0);

The initialization value may be any scalar or color expression. If a scalar expression is used,
its value is promoted to a color by duplicating its value into each component.

Colors may be specified in a particular color space by:

color [space] (u,v,w)

The optional specifier space, which must be a string literal, indicates the color coordinate
system of the 3-tuple. The default color coordinate system is ”rgb”. This construct lets you
specify the color u,v,w in a particular color space, but this statement implicitly converts
the color into its ”rgb” equivalent. Table 11.1, Color Coordinate Systems, lists the color
coordinate systems that are supported in the Shading Language.

Coordinate System Description
”rgb” Red, green, and blue.
”hsv” Hue, saturation, and value.
”hsl” Hue, saturation, and lightness.
”xyz”, ”XYZ” CIE XYZ coordinates.
”YIQ” NTSC coordinates.

Table 11.1: Color Coordinate Systems.

11.3 Points, Vectors, and Normals

Point-like variables are (x,y,z) triples of floats that are used to store locations, direction vec-
tors, and surface normals.

A point is a position in 3D space. A vector has a length and direction, but does not exist in
a particular location. A normal is a special type of vector that is perpendicular to a surface,
and thus describes the surface’s orientation.

All calculations involving points, vectors, and normals are assumed to take place in an
implementation-dependent coordinate system, usually either the camera or world coordinate
system. Procedures exist to transform points, vectors, and normals from the shading coor-
dinate system to various named coordinate systems, or to define a point, vector, or normal
in one of several coordinate systems and transform it to the shading coordinate system. It
should be noted that point locations, direction vectors, and normals do not transform in
the same way, and therefore it is important to use the correct transformation routine for
each type.

A number of standard coordinate systems are known to a shader. These include: ”raster”,
”NDC”, ”screen”, ”camera”, ”world”, and ”object”. These are discussed in the section on
Camera in Part I. In addition, a shader knows the coordinate systems shown in Table 11.2,
Point Coordinate Systems.

Point-like variables are declared:

point u, v=1, w=point(1,1,1);
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Coordinate System Description
”shader” The coordinate system in which the shader was defined. This

is the ”object” coordinate system when the shader is defined.

”current” The coordinate system in which the shading calculations are
being performed. This is implementation-dependent, but is
usually either the ”camera” or ”world” coordinate system.

string A named coordinate system established using RiCoordi-
nateSystem .

Table 11.2: Point coordinate systems.

vector R;
normal Nf;

The initialization value may be any scalar or point-like expression. If a scalar expression is
used, the value is promoted to a point (or vector or normal) by duplicating its value into
each component.

Point, vector, and normal constants default to be in the ”current” coordinate system. Points,
vectors, and normals can be specified in any known coordinate system with:

point [space] (x,y,z)
vector [space] (x,y,z)
normal [space] (x,y,z)

where the space is a string literal containing the name of the coordinate system. For exam-
ple,

point ”world” (0,0,0)

defines a point at the position (0,0,0) in world coordinates. This point is implicitly trans-
formed to the ”current” coordinate system. And similarly,

vector ”object” (0,0,1)

defines a vector pointing toward the +z axis in ”object” space, which is implicitly trans-
formed into the equivalent vector expressed in the ”current” coordinate system. Points,
vectors, and normals passed through the RenderMan Interface are interpreted to be in
”shader” or ”object” space, depending on whether the variable was set using a shader com-
mand or a geometric primitive command, respectively. All points, vectors, and normals
passed through the RenderMan Interface are transformed to the ”current” coordinate sys-
tem before shader execution begins.

11.4 Transformation Matrices

The Shading Language has a matrix type that represents the transformation matrix required
to transform points and vectors from one coordinate system and another. Matrices are
represented internally by 16 floats (a 4× 4 homogeneous transformation matrix).
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A matrix can be declared:

matrix zero = 0;
matrix ident = 1;

matrix m = matrix (m00, m01, m02, m03, m10, m11, m12, m13,
m20, m21, m22, m23, m30, m31, m32, m33);

Assigning a single floating-point number x to a matrix will result in a matrix with diagonal
components all being x and other components being zero (i.e., x times the identity matrix).
Constructing a matrix with 16 floats will create the matrix whose components are those
floats, in row-major order.

Similar to point-like types, a matrix may be constructed in reference to a named space:

matrix q = matrix ”shader” 1;
matrix m = matrix ”world” (m00, m01, m02, m03, m10, m11, m12, m13,

m20, m21, m22, m23, m30, m31, m32, m33);

The first form creates the matrix that transforms points from ”current” space to ”shader”
space. Transforming points by this matrix is identical to calling transform(”shader”,...). The
second form prepends the current-to-world transformation matrix onto the 4 × 4 matrix
with components m0,0...m3,3. Note that although we have used ”shader” and ”world” space
in our examples, any named space is acceptable.

11.5 Strings

Strings are used to name external objects (texture maps, for example). String literals (or
constants) are enclosed in double quotes, as in the C language, and may contain any of the
standard C “escape sequences” (such as \n for newline or \" for a quote).

11.6 Arrays

The Shading Language supports 1D arrays of all the basic data types. Local variable arrays
must be of fixed, predeclared (compile-time) lengths, though arrays can be of indetermi-
nate length for shader instance variable and function formal parameter declarations. Zero
and negative-length arrays are not permitted.

As in C, the syntax for declaring an array of any data type uses square brackets, as datatype[length].
length is a float constant, which is rounded down to generate an integer length. The syntax
for specifying the data of a constant array uses curly braces, as {value1, value2, ...}. For
example:

float a[10];
uniform color C[4]; float b[4] = { 3.14, 2.17, 0, -1.0 };
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As in C, individual array elements may referenced using the familiar square bracket nota-
tion. An array element index is a float expression, which is rounded down to generate and
integer index. Shading Language arrays perform over/underrun checking at run-time.
Also as in C, arrays themselves are not atomic objects — in other words, you may not
assign an entire array to another array, or compare entire arrays.

11.7 Uniform and Varying Variables

A renderer implementation may choose to shade many points, or even large regions of a
surface, at once. How large a such a region may be is implementation-dependent.

Shaders contain two classes of variables: uniform variables are those whose values are con-
stant over whatever portion of the surface is being shaded, while varying variables are
those that may take on different values at different locations on the surface being shaded.
For example, shaders inherit a color and a transparency from the graphics state. These
values do not change from point to point on the surface and are thus uniform variables.
Color and opacity can also be specified at the vertices of geometric primitives (see Section
5, Geometric Primitives). In this case they are bilinearly interpolated across the surface,
and therefore are varying variables.

Local variables and arguments to shaders are declared to be either uniform or varying by
specifying a storage modifier:

varying point p;
uniform point q;

Variables declared in the argument list of a shader are assumed to be uniform variables by
default. These are sometimes referred to as instance variables. If a variable is provided
only when a shader is instanced, or if it is attached to the geometric primitive as a whole,
it should be declared a uniform variable. However, if a variable is to be attached to the
vertices of geometric primitive, it should be declared as a varying variable in the shader
argument list.

Variables declared locally in the body of a shader, as arguments to a function, or as local
variables are assumed to be varying. Declaring a variable to be uniform inside a shader
or function definition is never necessary, but may allow the compiler to generate more
efficient code, particularly for renderer implementations that can shade large regions of a
surface at once.

If a uniform value (or a constant) is assigned to a varying variable or is used in a varying
expression, it will be promoted to varying by duplication. It is an error to assign a varying
value to a uniform variable or to use a varying value in a uniform expression.
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Section 12

SHADER EXECUTION ENVIRONMENT

When a shader is attached to a geometric primitive it inherits a set of varying variables
that completely defines the environment in the neighborhood of the surface element being
shaded. These state variables are predefined and should not be declared in a Shading
Language program. It is the responsibility of the rendering program to properly initialize
these variables before a shader is executed.

All the predefined variables which are available to each type of shader are shown in Ta-
ble 12.1, Predefined Surface Shader Variables, through Table 12.5, Predefined Imager Shader Vari-
ables. In these tables the top section describes state variables that can be read by the shader.
The bottom section describes the state variables that are the expected results of the shader.
By convention, capitalized variables refer to points and colors, while lower-case variables
are floats. If the first character of a variable’s name is a C or O, the variable refers to a
color or opacity, respectively. Colors and opacities are normally attached to light rays; this
is indicated by appending a lowercase subscript. A lowercase d prefixing a variable name
indicates a derivative.

All predefined variables are considered to be read-only, with the exception of the result
variables, which are read-write in the appropriate shader type, and Cs, Os, N, s and t,
which are read-write in any shader in which they are readable. Vectors are not normalized
by default.

12.1 Surface Shaders

The geometry is characterized by the surface position P which is a function of the surface
parameters (u,v). The rate of change of surface parameters are available as (du,dv). The
parametric derivatives of position are also available as dPdu and dPdv. The actual change
in position between points on the surface is given by P(u+du)=P+dPdu*du and P(v+dv)=P+dPdv*dv.
The calculated geometric normal perpendicular to the tangent plane at P is Ng. The shad-
ing normal N is initially set equal to Ng unless normals are explicitly provided with the
geometric primitive. The shading normal can be changed freely; the geometric normal
is automatically recalculated by the renderer when P changes, and cannot be changed by
shaders. The texture coordinates are available as (s,t). Figure 12.1 shows a small surface
element and its associated state.

The optical environment in the neighborhood of a surface is described by the incident ray
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Figure 12.1: Surface shader state

I and light rays L. The incoming rays come either directly from light sources or indirectly
from other surfaces. The direction of each of these rays is given by L; this direction points
from the surface towards the source of the light. A surface shader computes the outgoing
light in the direction −I from all the incoming light. The color and opacity of the outgoing
ray is Ci and Oi. (Rays have an opacity so that compositing can be done after shading. In a
ray tracing environment, opacity is normally not computed.) If either Ci or Oi are not set,
they default to black and opaque, respectively.

12.2 Light Source Shaders

A light source shader is slightly different (see Figure 12.2, Light source shader state). It
computes the amount of light cast along the direction L which arrives at some point in
space Ps. The color of the light is Cl while the opacity is Ol. The geometric parameters
described above (P, du, N, etc.) are available in light source shaders; however, they are
the parameters of the light emitting surface (e.g., the surface of an area light source)–not
the parameters of any primitive being illuminated. If the light source is a point light, P is
the origin of the light source shader space and the other geometric parameters are zero. If
either Cl or Ol are not set, they default to black and opaque, respectively.
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Name Type Storage Class Description
Cs color varying Surface color
Os color varying Surface opacity

P point varying Surface position
dPdu vector varying Derivitive of surface position along u
dPdv vector varying Derivitive of surface position along v
N normal varying Surface shading normal
Ng normal varying Surface geometric normal

u,v float varying Surface parameters
du,dv float varying Change in surface parameters
s,t float varying Surface texture coordinates

L vector varying Incoming light ray direction*
Cl color varying Incoming light ray color*
Ol color varying Incoming light ray opacity*

E point uniform Position of the eye
I vector varying Incident ray direction
ncomps float uniform Number of color components

time float uniform Current shutter time
dtime float uniform The amount of time covered by this shading

sample.
dPdtime vector varying How the surface position P is changing per

unit time, as described by motion blur in the
scene.

Ci color varying Incident ray color
Oi color varying Incident ray opacity

* Available only inside illuminance statements.

Table 12.1: Predefined Surface Shader Variables
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Figure 12.2: Light Source Shader State

12.3 Volume Shaders

A volume shader is not associated with a surface, but rather attenuates a ray color as it
travels through space. As such, it does not have access to any geometric surface param-
eters, but only to the light ray I and its associated values. The shader computes the new
ray color at the ray origin P −I. The length of I is the distance traveled through the volume
from the origin of the ray to the point P.

12.4 Displacement Shaders

The displacement shader environment is very similar to a surface shader, except that it only
has access to the geometric surface parameters. It computes a new P and/or a new N. In
rendering implementations that do not support the Displacement capability, modifications
to P will not actually move the surface (change the hidden surface elimination calculation);
however, modifications to N will still occur correctly.

12.5 Imager Shaders

An imager shader manipulates a final pixel color after all of the geometric and shading
processing has concluded. In the context of an imager shader, P is the position of the pixel
center in raster space, with the z component being 0.
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Name Type Storage Class Description
P point varying Surface position on the light
dPdu vector varying Derivitive of surface position along u
dPdv vector varying Derivitive of surface position along v
N normal varying Surface shading normal on the light
Ng normal varying Surface geometric normal on the light

u,v float varying Surface parameters
du,dv float varying Change in surface parameters
s,t float varying Surface texture coordinates

L vector varying Outgoing light ray direction*
Ps point varying Position being illuminated
E point uniform Position of the eye

ncomps float uniform Number of color components
time float uniform Current shutter time
dtime float uniform The amount of time covered by this shad-

ing sample.
Cl color varying Outgoing light ray color
Ol color varying Outgoing light ray opacity

* Available only inside solar or illuminate statements.

Table 12.2: Predefined Light Source Variables

Name Type Storage Class Description
P point varying Light ray endpoint
I vector varying Ray direction (pointing toward P)
E point uniform Position of the eye
Ci color varying Ray color
Oi color varying Ray opacity

ncomps float uniform Number of color components
time float uniform Current shutter time
dtime float uniform The amount of time covered by this shad-

ing sample.
Ci color varying Attenuated ray color
Oi color varying Attenuated ray opacity

Table 12.3: Predefined Volume Shader Variables
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Name Type Storage Class Description
P point varying Surface position
dPdu vector varying Derivitive of surface position along u
dPdv vector varying Derivitive of surface position along v
N normal varying Surface shading normal
Ng normal varying Surface geometric normal
I vector varying Incident ray direction
E point uniform Position of the eye

u,v float varying Surface parameters
du,dv float varying Change in surface parameters
s,t float varying Surface texture coordinates

ncomps float uniform Number of color components

time float uniform Current shutter time
dtime float uniform The amount of time covered by this shad-

ing sample.
dPdtime vector varying How the surface position P is changing

per unit time, as described by motion
blur in the scene.

P point varying Displaced surface position
N normal varying Displaced surface shading normal

Table 12.4: Predefined Displacement Shader Variables

Name Type Storage Class Description
P point varying Pixel raster position
Ci color varying Pixel color
Oi color varying Pixel opacity
alpha float uniform Fractional pixel coverage

ncomps float uniform Number of color components
time float uniform Shutter open time.
dtime float uniform The amount of time the shutter was open.
Ci color varying Output pixel color
Oi color varying Output pixel opacity

Table 12.5: Predefined Imager Shader Variables
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Section 13

LANGUAGE CONSTRUCTS

13.1 Expressions

Expressions are built from arithmetic operators, function calls, and variables. The language
supports the common arithmetic operators (+, -, *, and /) plus the vector operators ˆ (cross
product) and . (dot product), and the C conditional expression (binary relation ? expr1 :
expr2).

When operating on points, vectors, normals, or colors, an arithmetic operation is per-
formed in parallel on each component. If a binary operator involves a float and a multi-
component type (such as a point, vector, normal, matrix, or color), the float is promoted to
the appropriate type by duplicating its value into each component. It is illegal to perform
a binary operation between a point and a color. Cross products only apply to vectors; dot
products apply to both vectors and colors. Two points, two colors, or two strings can be
compared using == and !=. Points cannot be compared to colors.

The usual common-sense mathematical rules apply to point/vector/normal arithmetic.
For example, a vector added to a point yields a point, a vector added to a vector yields a
vector, and a point subtracted from a point yields a vector. Mixing the types of vectors,
normals, and points (for example, taking a cross product of two points, rather than two
vectors) is allowed, but is discouraged. A particular implementation may choose to issue
a compiler warning in such cases. Note that vectors and normals may be used nearly
interchangably in arithmetic expressions, but care should be taken to distinguish between
them when performing coordinate system transformations.

Matrix variables can be tested for equality and inequality with the == and != boolean op-
erators. The * operator between matrices denotes matrix multiplication, while m1 / m2
denotes multiplying m1 by the inverse of matrix m2. Thus, a matrix can be inverted by
writing 1/m.

13.2 Standard Control Flow Constructs

The basic explicit control flow constructs are:

• block-structured statement grouping,
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• conditional execution,

• loops, and

• function calls.

These constructs are all modeled after C. Statement grouping allows a single statement to
be replaced with a sequence of statements.

{
stmt ;
...
stmt ;

}

Any variables declared within such a brace-delimited series of statements are only visible
within that block. In other words, variables follow the same local scoping rules as in the C
language.

Conditional execution is controlled by

if ( boolean expression ) stmt else stmt

There are two loop statements,

while ( boolean expression ) stmt

and

for ( expr ; boolean expression ; expr ) stmt

A boolean expression is an expression involving a relational operator, one of: <, >, <=,
>=, ==, and !=. It is not legal to use an arbitrary float, point or color expression directly
as a boolean expression to control execution. A boolean expression can not be used as a
floating point expression.

The

break [n]

and

continue [n]

statements cause either the for or the while loop at level n to be exited or to begin the next
iteration. The default value for n is 1 and refers to the immediately enclosing loop.

Built-in and user-progrmamed functions are called just as in C. The

return expr

statement is used to return a value to the caller. Any functions that do not return a value
should be declared as void , just as in ANSI C, and should not contain a return statement.
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13.3 Illuminance and Illuminate Statements

The Shading Language contains three new block statement constructs: illuminance, illu-
minate, and solar. illuminance is used to control the integration of incoming light over a
hemisphere centered on a surface in a surface shader. illuminate and solar are used to spec-
ify the directional properties of light sources in light shaders. If a light source does not
have an illuminate or solar statement, it is a non-directional ambient light source.

Unlike other control statements, illuminance, illuminate, and solar statements cannot be
nested. However, multiple illuminance, illuminate, or solar statements may be given se-
quentially within a single shader.

The illuminance statement controls integration of a procedural reflectance model over the
incoming light. Inside the illuminance block two additional variables are defined: Cl or
light color, and L or light direction. The vector L points towards the light source, but may
not be normalized (see Figure 12.2). The arguments to the illuminance statement specify a
three-dimensional solid cone. The two forms of an illuminance statement are:

illuminance ( [string category,] point position )
statements

illuminance ( [string category,] point position, vector axis, float angle )
statements

The first form specifies that the integral extends over the entire sphere centered at position.
The second form integrates over a cone whose apex is on the surface at position. This cone
is specified by giving its centerline, and the angle between the side and the axis in radians.
If angle is PI, the cone extends to cover the entire sphere and these forms are the same as
the first form. If angle is PI/2, the cone subtends a hemisphere with the north pole in the
direction axis. Finally, if angle is 0, the cone reduces to an infinitesimally thin ray.

Light shaders can specify “categories” to which they belong by declaring a string parame-
ter named category (this name has two underscores), whose value is a comma-separated
list of categories into which the light shader falls. When the illuminance statement con-
tains an optional string parameter category , the loop will only consider lights for which
the category is among those listed in its comma-separated category list. If the illumi-
nance category begins with a - character, then only lights not containing that category will
be considered.

When the optional category string is omitted, an illuminance loop will execute its body for
every nonambient light source.

A Lambertian shading model is expressed simply using the illuminance statement:

Nn = normalize(N);
illuminance( P, Nn, PI/2 ) {

Ln = normalize(L);
Ci += Cs * Cl * Ln.Nn;

}
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This example integrates over a hemisphere centered at the point on the surface with its
north pole in the direction of the normal. Since the integral extends only over the upper
hemisphere, it is not necessary to use the customary max(0,Ln.Nn) to exclude lights that
are locally occluded by the surface element.

The illuminate and solar statements are inverses of the illuminance statement. They control
the casting of light in different directions. The point variable L corresponding to a particu-
lar light direction is available inside this block. This vector points outward from the light
source. The color variable Cl corresponds to the color in this direction and should be set.
Like the illuminance statements, illuminate and solar statements cannot be nested.

The illuminate statement is used to specify light cast by local light sources. The arguments
to the illuminate statement specify a three-dimensional solid cone. The general forms are:

illuminate ( position ) stmt
illuminate ( position, axis, angle ) stmt

The first form specifies that light is cast in all directions. The second form specifies that
light is cast only inside the given cone. The length of L inside an illuminate statement is
equal to the distance between the light source and the surface currently being shaded.

The solar statement is used to specify light cast by distant light sources. The arguments to
the solar statement specify a three-dimensional cone. Light is cast from distant directions
inside this cone. Since this cone specifies only directions, its apex need not be given. The
general forms of the solar statement are:

solar ( ) stmt
solar ( axis, angle ) stmt

The first form specifies that light is being cast from all points at infinity (e.g., an illumina-
tion map). The second form specifies that light is being cast from only directions inside a
cone.

An example of the solar statement is the specification of a distant light source:

solar( D, 0 )
Cl = intensity * lightcolor;

This defines a light source at infinity that sends light in the direction D. Since the angle of
the cone is 0, all rays from this light are parallel.

An example of the illuminate statement is the specification of a standard point light source:

illuminate( P )
Cl = (intensity * lightcolor) / (L.L)

This defines a light source at position P that casts light in all directions. The 1/L.L term
indicates an inverse square law fall off.
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Section 14

SHADERS AND FUNCTIONS

The Shading Language distinguishes between shaders and functions. Shaders are proce-
dures that are referred to by RenderMan Interface procedures. Functions are procedures
that can be called from within the Shading Language. The distinction between shaders and
functions is primarily a consequence of different argument passing conventions.

14.1 Shaders

Shaders are introduced by the keywords light, surface, volume, displacement, or imager
and are followed by the name of the shader and the statements that comprise its definition.
These keywords indicate the type of RenderMan Interface shader that is being defined.
The RenderMan Interface uses the shader type to enforce a type match in subsequent calls
to RenderMan Interface procedures. For example, it is illegal to declare a shader to be of
type light and then instance it using RiSurface .

The arguments to a shader are referred to as its instance variables. All of these variables are
required have default values, and are assumed to be uniform unless declared otherwise.
Shader instance variable values can be changed when a particular shader is instanced from
the RenderMan Interface. For example, consider the shader weird:

surface
weird( float a=0.5; varying float b=0.25 )
{

Ci = color (mod(s,a), abs(sin(a+b)), mod(b,t));
}

This surface shader may be referenced through the RenderMan Interface with the RiSurface
command. For example,

RiSurface ( ”weird”, RI NULL );

instances the above shader with all its defaults.
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Shader instance variable values can be changed from their defaults by passing their new
values through the RenderMan Interface. This first requires that the type of the variable be
declared. The declaration for weird would be:

RiDeclare ( ”a”, ”uniform float” );
RiDeclare ( ”b”, ”varying float” );

Of course, the RiDeclare can be eliminated if “in-line declarations” are used (see Section 3).
In either case, uniform instance variables can be set by passing them in the parameterlist of
a shader instance. In the following example, a is redefined while b remains equal to its
default:

RtFloat a = 0.3;
RiSurface ( ”weird”, ”a”, (RtPointer )&a, RI NULL );

Shader variables can also be set in geometric primitives. For example, the weird shader
variables could be set when defining a primitive:

RtFloat a;
RtFloat bs[4];
RtPoint Ps[4];
RiPolygon (4, ”P”, Ps, ”a”, (RtPointer )&a, ”b”, (RtPointer )bs, RI NULL)

a is a single float and b is an array containing four values, since it is a varying variable. The
standard variable ”P” is predeclared to be of type varying point.

If a geometric primitive sets a shader variable that is defined in none of the shaders as-
sociated with that primitive, it is ignored. Variables that are set on geometric primitives
override the values set by the shader instance.

Shader instance variables are read-only in the body of the shader, unless they are declared
using the output keyword:

displacement
lumpy ( float a=0.5; output varying float height=0 )
{

float h = a * noise(P);
P += h * normalize(N);
N = calculatenormal(N);
height = h;

}

This displacement shader produces a lumpy surface and also saves the displacement amount
in an output variable height . Output variables of one shader may be read by other shaders
on the same primitive (see Section 15.8) in order to pass information between them.
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14.2 Functions

Functions are similar to shaders except they can be called from shaders or other functions,
but cannot be instanced from the RenderMan Interface. Functions in the Shading Language
are also much like functions in C. For example, the following defines a function normalize
that returns a unit vector in the direction V:

vector
normalize ( vector V )
{

return V/length(V);
}

Function calls use the traditional C syntax, except for the issues noted below.

Functions may return any of the basic types (float, color, point, vector, normal, matrix,
string). Functions may not return arrays, though they make take arrays as parameters.
Functions must have exactly one return statement, except for those functions declared with
type void , which may not have any return statement.

Function parameters are passed by reference; in other words, parameters are not copied
into private data areas of the function. Nevertheless, function parameters are not writable
unless specified with the output keyword. For example:

void
normalize inplace ( output vector V )
{

V = V/length(V);
}

Functions in the Shading Language cannot be called recursively.

Functions may be polymorphic — that is, you may define multiple functions with the same
name, as long as they take different types or numbers of arguments. Functions may even
be polymorphic based on return type. For example:

float snoise (point p)
{

return 2 * (float noise(p)) - 1;
}

float snoise (float s, float t)
{

return 2 * (float noise(s, t)) - 1;
}

vector snoise (point p)
{
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return 2 * (vector noise(p)) - 1;
}

Functions may be declared anyplace that it is legal to declare a variable or have any other
language statement, including inside the body of a shader, inside another function, or in-
side any other code block. A function may only be called within the lexical scope in which
it is declared, and only after its declaration (the same rules that apply to using a declared
variable). The only data that functions may access are those passed as parameters, except
for variables declared with the extern keyword, which indicates that the variable is in an
outer scope rather than that local storage should be allocated. For example:

surface mysurf (float Knoise = 0.5;) /* parameter */
{

color shadernoise (point p)
{

extern float Knoise;
return Knoise * color noise (transform (”shader”, p));

}

/* code for the shader */
Ci = shadernoise(P) * diffuse(faceforward(normalize(N),I));

}
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Section 15

BUILT-IN FUNCTIONS

The following built-in functions are provided in the Shading Language.

15.1 Mathematical Functions

The following library of math functions is provided. This library includes most of the rou-
tines normally found in the standard C math library as well as functions for interpolation
and computing derivatives.

The following mathematical functions are provided:

float PI = 3.14159... ;

float radians ( float degrees )
float degrees ( float radians )

float sin ( float a )
float asin ( float a )

float cos ( float a )
float acos ( float a )

float tan ( float a )
float atan ( float yoverx ), atan ( float y, x )

The predefined float constant PI is the value of π. The function radians converts from
degrees to radians; and conversely, the function degrees converts from radians to de-
grees. sin, cos, and tan are the standard trigonometric functions of radian arguments.
asin returns the arc sine in the range −π/2 to π/2. acos returns the arc cosine in the
range 0 to π. atan with one argument returns the arc tangent in the range −π/2 to
π/2. atan with two arguments returns the arc tangent of y/x in the range −π to π.

float pow ( float x, y )
float exp ( float x )
float sqrt ( float x )
float inversesqrt ( float x )
float log ( float x ), log ( float x, base )
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These functions compute power and inverse power functions. pow returns xy , exp
returns ex. sqrt returns the positive square root of x , and inversesqrt(x) returns
1/sqrt(x). log with one argument returns the natural logarithm of x (x = log(exp(x))).
log with two arguments returns the logarithm in the specified base (x = log(pow(base,
x), base)).

float mod ( float a, b )
float abs ( float x )
float sign ( float x )

mod returns a value greater than 0 and less than or equal to b such that mod(a,b)
= a - n*b for some integer n. abs returns the absolute value of its argument and sign
returns -1 if its argument is negative, 1 if its argument is positive, and 0 if its argument
is zero.

type min (type a, b, ... )
type max ( type a, b, ... )
type clamp ( type a, min, max )

min takes a list of two or more arguments of identical type and returns the argument
with minimum value; max returns the argument with maximum value. clamp(a,min,max)
returns min if a is less than min, max if a is greater than max ; otherwise it returns a.
The type may be any of float, point, vector, normal, or color. The variants that oper-
ate on colors or point-like objects operate on a component-by-component basis (e.g.,
separately for x, y, and z).

float mix (float x, y; float alpha )
point mix (point x, y; float alpha )
vector mix (vector x, y; float alpha )
normal mix (normal x, y; float alpha )
color mix (color x, y; float alpha )

mix returns x · (1 − α) + y · α, that is, it performs a linear blend between values x
and y . The types of x and y must be identical, but may be any of float, point, vector,
normal, or color. The variants that operate on colors or point-like objects operate on
a component-by-component basis (e.g., separately for x, y, and z).

float floor ( float x )
float ceil ( float x )
float round ( float x )

floor returns the largest integer (expressed as a float) not greater than x . ceil returns
the smallest integer (expressed as a float) not smaller than x . round returns the integer
closest to x .

float step ( float min, value )
float smoothstep ( float min, max, value )
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step returns 0 if value is less than min; otherwise it returns 1. smoothstep returns 0
if value is less than min, 1 if value is greater than or equal to max , and performs a
smooth Hermite interpolation between 0 and 1 in the interval min to max .

float filterstep ( float edge, s1; ...parameterlist...)
float filterstep ( float edge, s1, s2; ...parameterlist...)

This function provides an analytically antialiased step function. In its two argument
form, it takes parameters identical to step, but returns a result which is filtered over
the area of the surface element being shaded. If the optional s2 parameter is pro-
vided, the step function is filtered in the range between the two values. This low-
pass filtering is similar to that done for texture maps (for reference, see Section 15.7,
Texture Mapping Functions). The parameterlist provides control over the filter func-
tion, and may include the following parameters: ”width” (aka ”swidth”), the amount to
“overfilter” is s; ”filter”, the name of the filter kernel to apply. The filter may be any
of the following: ”box”, ”triangle”, ”catmull-rom”, or ”gaussian”. The default filter is
”catmull-rom”.

float spline ( [string basis;] float value; float f1, f2, ..., fn, fn1 )
float spline ( [string basis;] float value; float fvals[] )
color spline ( [string basis;] float value; color c1, c2, ..., cn, cn1 )
color spline ( [string basis;] float value; color cvals[] )
point spline ( [string basis;] float value; point p1, p2, ..., pn, pn1 )
point spline ( [string basis;] float value; point pvals[] )
vector spline ( [string basis;] float value; vector v1, v2, ..., vn, vn1 )
vector spline ( [string basis;] float value; vector vvals[] )

spline fits a spline to the control points given. At least four control points must always
be given. If value equals 0, f2 (or c2, p2, v2) is returned; if value equals 1, fn (or cn,
pn, vn) is returned. The type of the result depends on the type of the arguments.

If the first argument to spline is a string, it is interpreted as the name of a cubic spline
basis function. The basis may be any one of ”catmull-rom”, ”bezier”, ”bspline”, ”her-
mite”, or ”linear”. If the optional basis name is not supplied, ”catmull-rom” is assumed,
resulting in the control points being interpolated by a Catmull-Rom spline. In the
case of Bezier and Hermite spline bases, the number of spline knots must be 4n+3
and 4n+2, respectively. In the case of linear spline basis, the first and last knot are
unused, but are nonetheless required to maintain consistency with the cubic bases.

For all spline types, an array of values may be used instead of a list of values to
specify the control points of a spline.

float Du ( float p ), Dv ( float p ), Deriv ( float num; float den )
color Du ( color p ), Dv ( color p ), Deriv ( color num; float den )
vector Du ( point p ), Dv ( point p ), Deriv ( point num; float den )
vector Du ( vector p ), Dv ( vector p ), Deriv ( vector num; float den )

These functions compute the derivatives of their arguments. The type returned de-
pends on the type of the first argument. Du and Dv compute the derivatives in the
u and v directions, respectively. Deriv computes the derivative of the first argument
with respect to the second argument.
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The actual change in a variable is equal to its derivative with respect to a surface
parameter times the change in the surface parameter. Thus, assuming forward dif-
ferencing,

function(u+du)-function(u) = Du( function(u) ) * du;
function(v+dv)-function(v) = Dv( function(v) ) * dv;

float random ()
color random ()
point random ()

random returns a float, color, or point whose components are a random number be-
tween 0 and 1.

float noise ( float v ), noise ( float u, v ), noise ( point pt ) noise ( point pt, float t )
color noise ( float v ), noise ( float u, v ), noise ( point pt ), noise ( point pt, float t )
point noise ( float v ), noise ( float u, v ), noise ( point pt ), noise ( point pt, float t )
vector noise ( float v ), noise ( float u, v ), noise ( point pt ), noise ( point pt, float t )

noise returns a value which is a pseuodrandom function of its arguments; its value
is always between 0 and 1. The domain of this noise function can be 1-D (one float),
2-D (two floats), 3-D (one point), or 4-D (one point and one float). These functions
can return any type. The type desired is indicated by casting the function to the type
desired. The following statement causes noise to return a color.

c = 2 * color noise(P);

float pnoise ( float v, uniform float period ),
pnoise ( float u, v, uniform float uperiod, uniform float vperiod ),
pnoise ( point pt, uniform point pperiod ),
pnoise ( point pt, float t, uniform point pperiod, uniform float tperiod )

color pnoise ( float v, uniform float period ),
pnoise ( float u, v, uniform float uperiod, uniform float vperiod ),
pnoise ( point pt, uniform point pperiod ),
pnoise ( point pt, float t, uniform point pperiod, uniform float tperiod )

point pnoise ( float v, uniform float period ),
pnoise ( float u, v, uniform float uperiod, uniform float vperiod ),
pnoise ( point pt, uniform point pperiod ),
pnoise ( point pt, float t, uniform point pperiod, uniform float tperiod )

vector pnoise ( float v, uniform float period ),
pnoise ( float u, v, uniform float uperiod, uniform float vperiod ),
pnoise ( point pt, uniform point pperiod ),
pnoise ( point pt, float t, uniform point pperiod, uniform float tperiod )

pnoise returns a value similar to noise with the same arguments, however, the value
returned by pnoise is periodic with period period (or pperiod , tperiod , etc.). That is,
pnoise(v, p) == pnoise(v+p, p). The period parameters must be uniform and have an
integer value (if it is a float expression), or lie on the integer lattice (if it is a point
expression).
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float cellnoise ( float v ), cellnoise ( float u, v ),
cellnoise ( point pt ) cellnoise ( point pt, float t )

color cellnoise ( float v ), cellnoise ( float u, v ),
cellnoise ( point pt ), cellnoise ( point pt, float t )

point cellnoise ( float v ), cellnoise ( float u, v ),
cellnoise ( point pt ), cellnoise ( point pt, float t )

vector cellnoise ( float v ), cellnoise ( float u, v ),
cellnoise ( point pt ), cellnoise ( point pt, float t )

cellnoise returns a value which is a pseuodrandom function of its arguments. Its
domain can be 1-D (one float), 2-D (two floats), 3-D (one point), or 4-D (one point
and one float). Its return value is uniformly distributed between 0 and 1, has constant
value between integer lattice points, and is discontinuous at integer locations. This is
useful if you are dividing space into regions (“cells”) and want a different (repeatable)
random number for each region. It is considerably cheaper than calling noise, and
thus is preferable if you have been using noise simply to generate repeatable random
sequences. The type desired is indicated by casting the function to the type desired.

15.2 Geometric Functions

Geometric functions provide a kernel of useful geometric operations. Most of these func-
tions are most easily described by just giving their implementation.

float xcomp ( ptype P )
float ycomp ( ptype P )
float zcomp ( ptype P )

void setxcomp ( output ptype P; float x )
void setycomp ( output ptype P; float y )
void setzcomp ( output ptype P; float z )

These functions get and set individual components of points, vectors, or normals.

float
length ( vector V )
{

return sqrt(V.V);
}

Return the length of a vector.

vector
normalize ( vector V )
{

return V/length(V);
}
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Return a unit vector in the direction of V .

float
distance ( point P1, P2 )
{

return length(P1-P2);
}

Return the distance between two points.

float ptlined ( point Q, P1, P2 )

Returns the minimum perpendicular distance between the point Q and the line seg-
ment that passes from the point P0 to the point P1 (not the infinite line which passes
through P0 and P1).

float rotate ( point Q; float angle; point P1, P2 )

Rotate a point Q by angle radians about the axis which passes through the points P0
and P1.

float
area( point P )
{

return length( Du(P)*du ˆ Dv(P)*dv);
}

Return the differential surface area.

vector
faceforward ( vector N, I [, Nref])
{

return sign(-I.Ng) * N;
}

Flip N so that it faces in the direction opposite to I, from the point of view of the
current surface element. The surface element’s point of view is the geometric normal
Ng, unless Nref is supplied, in which case it is used instead.

vector
reflect ( vector I, N )
{

return I - 2*(I.N)*N;
}

Return the reflection vector given an incident direction I and a normal vector N .

vector
refract ( vector I, N; float eta )
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{
float IdotN = I.N;
float k = 1 - eta*eta*(1 - IdotN*IdotN);
return k < 0 ? (0,0,0) : eta*I - (eta*IdotN + sqrt(k))*N;

}
Return the transmitted vector given an incident direction I, the normal vector N and
the relative index of refraction eta. eta is the ratio of the index of refraction in the vol-
ume containing the incident vector to that of the volume being entered. This vector
is computed using Snell’s law. If the returned vector has zero length, then there is no
transmitted light because of total internal reflection.

fresnel ( vector I, N; float eta; output float Kr, Kt; [output vector R, T] )
Return the reflection coefficient Kr and refraction (or transmission) coefficient Kt
given an incident direction I, the surface normal N , and the relative index of refraction
eta. eta is the ratio of the index of refraction in the volume containing the incident
vector to that of the volume being entered. These coefficients are computed using
the Fresnel formula. Optionally, this procedure also returns the reflected (R) and
transmitted (T ) vectors. The transmitted vector is computed using Snell’s law.

point transform ( string tospace; point p )
point transform ( string fromspace, tospace; point p )
point transform ( matrix m; point p )
point transform ( string fromspace; matrix m; point p )

vector vtransform ( string tospace; vector v )
vector vtransform ( string fromspace, tospace; vector v )
vector vtransform ( matrix m; vector v )
vector vtransform ( string fromspace; matrix m; vector v )

normal ntransform ( string tospace; normal n )
normal ntransform ( string fromspace, tospace; normal n )
normal ntransform ( matrix m; normal n )
normal ntransform ( string fromspace; matrix m; normal n )

The transform function transforms the point p from the coordinate system fromspace
to the coordinate system tospace. If fromspace is absent, it is assumed to be the ”cur-
rent” coordinate system. A transformation matrix may be given instead of a tospace
name. The vtransform and ntransform functions perform the equivalent coordinate
system transformations on vectors and normals, respectively.

float depth ( point P )
Return the depth of the point P in camera coordinates. The depth is normalized to
lie between 0 (at the near clipping plane) and 1 (at the far clipping plane).

point
calculatenormal ( point P )
{

return Du(P) ˆ Dv(P);
}
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Return surface normal given a point on the surface. This function is normally called
after a displacement. For example:

P += displacement * N;
N = calculatenormal( P );

15.3 Color Functions

Several functions exist which operate on colors.

float comp ( color c; float index )
void setcomp ( output color c; float index, value )

These functions get and set individual color components. The index values are 0-
based (e.g., the green channel of an RGB triple is component 1).

color mix ( color color0, color1; float value )
{

return (1-value)*color0 + value*color1;
}

Return an interpolated color value.

color ctransform ( string tospace; color C )
color ctransform ( string fromspace, tospace; color C )

Transform the color C from the color representation fromspace to the color represen-
tation tospace. If fromspace is absent, it is assumed to be ”rgb”.

15.4 Matrix Functions

float comp ( matrix m; float row, column )
void setcomp ( output matrix m; float row, column, value )

These functions get and set individual components of a matrix. Strict runtime bounds
checking will be performed on row and column to ensure that they fall into the range
0...3.

float determinant ( matrix m )
Returns the determinant of matrix m.

matrix translate ( matrix m; vector t )
matrix rotate ( matrix m; float angle; vector axis )
matrix scale ( matrix m; point s )

Postconcatenates simple transformations onto the matrix m. These functions are sim-
ilar to the RI functions RiTranslate , RiRotate and RiScale , except that the rotation
angle in rotate() is in radians, not in degrees as with RiRotate .
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15.5 String Functions

string concat ( string a, b, ... )

Concatenates two or more strings into a single string.

void printf ( string pattern, val1, val2,..., valn )

Print the values of the specified variables on the standard output stream of the ren-
derer (much like the printf function in C. pattern uses ”%f”, ”%p”, ”%c”, ”%m”, and ”%s”
to indicate float, point, color, matrix, and string, respectively. A vector or normal may
also be printed using ”%p”.

string format ( string pattern, val1, val2,..., valn )

Does a formatted string creation under the control of pattern. This function is similar
to the C function sprintf(). As with the Shading Language printf function, ”%f”, ”%p”,
”%c”, ”%m”, and ”%s” to indicate float, point, color, matrix, and string, respectively.

float match ( string pattern, subject )

Does a string pattern match on subject . Returns 1.0 if the pattern exists anywhere
within subject , and 0.0 if the pattern does not exist within subject . pattern can be
any regular expression, as described in the POSIX manual page on regex()(3X), with
the following exception: the $n notation does not work, as there are no return values
from this function. Note that the pattern does not need to start in the first character of
the subject string, unless the pattern begins with the ˆ (beginning of string) character.

15.6 Shading and Lighting Functions

In this section, built-in shading and lighting functions are defined.

color
ambient ()

ambient returns the total amount of ambient light incident upon the surface. An
ambient light source is one in which there is no directional component, that is, a light
which does not have an illuminate or a solar statement.

color
diffuse ( normal N )
{

color C = 0;
illuminance( P, N, PI/2 )

C += Cl * normalize(L).N;
return C;

}
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diffuse returns the diffuse component of the lighting model. N is a unit-length surface
normal.

color
specular ( normal N; vector V; float roughness )
{

color C = 0;
illuminance( P, N, PI/2 )

C += Cl * specularbrdf (normalize(L), N, V, roughness);
return C;

}
specular returns the specular component of the lighting model, using an implementation-
dependent specularbrdf. N is the unit-length normal to the surface. V is a unit-length
vector from a point on the surface towards the viewer.

color specularbrdf ( vector L; normal N; vector V; float roughness )
Returns the specular attenuation of light coming from the direction L, reflecting to-
ward direction V , with surface normal N and roughness rough. All of L, V , and N
are assumed to be of unit length. This is the same reflection model calculation found
inside the illuminance loop of the specular function. This allows users to write an
illuminance loop that reproduces the functionality of the specular() function, even if
the renderer has an implementation-specific formula for built-in specular reflection.
Here is an example implementation of specularbrdf:

color specularbrdf ( vector L, N, V; float roughness )
{

vector H = normalize(L+V);
return pow (max (0, N.H), 1/roughness);

}

color
phong ( normal N; vector V; float size )
{

color C = 0;
vector R = reflect( -normalize(V), normalize(N) );
illuminance( P, N, PI/2 ) {

vector Ln = normalize(L);
C += Cl * pow(max(0.0,R.Ln), size);

}
return C;

}
phong implements the Phong specular lighting model.

color trace ( point P, point R )
trace returns the incident light reaching a point P from a given direction R. If a partic-
ular implementation does not support the Ray Tracing capability, and cannot compute
the incident light arriving from an arbitrary direction, trace will return 0 (black).
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15.7 Texture Mapping Functions

Texture maps are images that are mapped onto the surface of a geometric primitive. The
RenderMan Interface supports three primitive types of texture access: basic texture maps
(via texture), environment maps (via environment), and shadow or z-buffer maps (via
shadow). Texture maps are accessed using two-dimensional coordinates and return floats
or colors. Environment maps are accessed using a direction and return floats or colors.
Shadow maps are accessed using points and return floats.

For two-dimensional access (texture), the texture coordinates default to the texture coor-
dinates attached to the surface, (s,t). These default texture coordinates are equal to the
surface parameters, the current texture coordinates, or the texture coordinates passed with
the geometric primitive. Texture coordinates can also be computed in the Shading Lan-
guage. This generality allows for many different types of coordinate mappings. Images
stored in various map projections can be accessed by computing the map projection given
a point on a sphere. This allows basic texture maps to be used as environment maps. Im-
ages can also be mapped onto surfaces using a two step process. First the surface of the
geometric primitive is mapped to the surface of a parametric primitive, such as a plane or
cylinder, and then the parameters of this primitive are used as the texture coordinates. This
is sometimes called a decal projection.

For three-dimensional access (environment and shadow), the texture coordinates must al-
ways be explicitly specified.

There is no restriction on how texture map values are used in the Shading Language. For
example, displacement mapping can be performed by moving a point on the surface in
the direction of the normal by the amount returned by a basic texture map. Transparency
mapping differs from color mapping only in which variable, either Os or Cs, the texture
is assigned to. There is also, in principle, no limit on the number of texture accesses per
shader or the number of texture maps per shader or per frame.

Texture maps are created in advance from image data via three types of MakeTexture pro-
cedures that are defined as part of the RenderMan Interface. These are described in Part
I in the section on Texture Map Utilities. RiMakeTexture creates a texture map for access
via texture. RiMakeCubeFaceEnvironment and RiMakeLatLongEnvironment create an
environment map for access via environment. RiMakeShadow creates a shadow map for
access via shadow. A texture file may contain several channels of information and have any
horizontal or vertical resolution. This information is normally inherited from the image
from which the texture is made. The s coordinate is assigned to the horizontal direction
with increasing values moving right. The t coordinate is assigned to the vertical direction
with increasing values moving down. These coordinates are normalized to lie in the range
0 to 1 so that changing the resolution of the texture map has no effect on the shaders that
access the texture map. When a texture map is created, the wrap mode is also specified.
The wrap mode controls what values are returned if the texture coordinates fall outside the
unit square. Allowed wrap modes are: periodic, black and clamp. periodic causes the texture
data to tile the plane, black causes accesses outside the unit square to return the value 0, and
clamp causes the texture coordinates to be clamped to the closest point on the unit square
and the texture value associated with that point to be returned.

The texture access functions normally pass the texture map through a low-pass filter to
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prevent aliasing. If one set of texture coordinates is given to the access function, the tex-
ture will be filtered over the area of the surface element being shaded (see the Shading
Rate section in Part I). Four sets of texture coordinates can also be given to the access pro-
cedure, in which case the texture is filtered over the quadrilateral determined by those
four points. The quality of texture antialiasing is controlled in the same way as spatial
antialiasing. Parameters control how true the answer is, the effective number of samples
used before filtering, and the type and width of the filter used. For this to be done properly
(since texture maps are normally prefiltered), these filtering parameters are best given to
the appropriate RiMake... procedure. For flexibility, however, they can also be changed at
access time. Table 15.1, Texture Access Parameters gives the standard parameters to all the
texture access functions; particular implementations may have additional parameters. If a
parameter is encountered by an implementation that does not support its functionality, it
should be ignored.

Name Type Description
”blur” varying float Specifies an additional area to be added to the texture area

filtered in both the s and t directions, expressed in units of
texture coordinates. A value of 1.0 would request that the
entire texture file be blurred into the result. A value of
0.001 would request that one extra texture pixel be added
in the case of a one-thousand by one-thousand texture file.

”sblur” varying float Specifies ”blur” individually in the s direction.
”tblur” varying float Specifies ”blur” individually in the t direction.

”width” uniform float This value multiplies the width of the area being filtered
over in both the s and t directions. A value of 0 effectively
turns off texture antialiasing. The default value is 1.0.

”swidth” uniform float Specifies ”width” individually in the s direction.
”twidth” uniform float Specifies ”width” individually in the t direction.

”filter” uniform string Specifies the name of the filter to use for filtering over an
area of the texture. The default is ”box”. Individual imple-
mentations may allow additional filters.

”fill” uniform float Specifies the value to be provided for channels requested
that are not present in the texture file. This is most often
useful for a shader that knows how to use a texture con-
taining an alpha channel. If no alpha channel is present in
the texture file, the texture system quietly provides a de-
fault value of 0.0 to requests for the alpha value resulting
in a completely tranparent texture. Such a shader could
provide its own ”fill” value of 1.0 so that textures without
an alpha channel would be opaque by default.

Table 15.1: Texture and Environment Map Access Parameters
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15.7.1 Basic texture maps

Basic texture maps return either floats or colors.

float texture ( string name[channel ]; [texture coordinates,] [parameterlist ] )
color texture ( string name[channel ]; [texture coordinates,] [parameterlist ] )

where texture coordinates is one of the following:

float s, t;
float s1,t1, s2,t2, s3,t3, s4,t4;

Return the filtered texture value. The cast before the function determines the type
returned, either a float or a color. The name is the name of the texture map created
using RiMakeTexture . The channel selector is optional; if it is not present, the brack-
ets are also omitted and channel 0 is assumed. channel selects the starting channel
in the texture. The number of channels returned depends on whether the texture
is interpreted as a float or a color. texture coordinates are also optional. If present
they consist either of a single 2-D coordinate or four 2-D coordinates. If no texture
coordinates are given, the current values of (s,t) are used. parameterlist is a list of
name-value pairs that allow greater control over texture access.

Some examples of the use of this function are:

c = texture( ”logo” [0] );
c = color texture ( ”logo” );
c = color texture ( ”logo”, 2*s, 4*t );

In the first two cases, the texture coordinates are the current values of the predefined
variables (s,t).

15.7.2 Environment maps

float environment ( string name[channel ]; texture coordinates, [parameterlist ] )
color environment ( string name[channel ]; texture coordinates, [parameterlist ] )

where texture coordinates is one of the following:

point R;
point R1, R2, R3, R4;

Return the filtered texture value from an environment map. The cast before the func-
tion determines the type returned, either a float or a color. The name is the name
of the texture map created using RiMake...Environment. The channel selector is op-
tional; if it is not present, the brackets are also omitted and channel 0 is assumed.
channel selects the starting channel in the texture. The number of channels returned
depends on whether the texture is interpreted as a float or a color. This function ex-
pects either a single texture coordinate or four texture coordinates. These are points
that are used to define a direction in space. The length of this vector is unimportant.
parameterlist is a list of name-value pairs which allow greater control over texture
access.
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15.7.3 Shadow depth maps

Shadow depth maps are z-buffer images as seen from a particular view point. Normally a
shadow map is associated with a light source and represents a depth buffer rendered from
the point of view of the light source. The texture coordinate of a shadow map is a point.
The value returned is the fraction of points on the shaded surface that are farther from the
light than the surface recorded in the depth map. A value of 1 indicates that the surface is
completely in shadow and a value of 0 indicates that the surface is completely illuminated
by the light source.

float shadow ( string name[channel ]; texture coordinates[, parameterlist ] )

where texture coordinates is one of the following:

point P;
point P1, P2, P3, P4;

Return the shadow value from a shadow depth map. The name is the name of the
texture map created using RiMakeShadow . The channel selector is optional; if it is
not present, the brackets are also omitted and channel 0 is assumed. channel selects
the starting channel in the texture. Only one channel of a shadow map is ever ac-
cessed. texture coordinates are points in the coordinate system in which the depth
map was created. parameterlist is a list of name-value pairs that allow greater control
over texture access.

15.7.4 Getting Information About Texture Maps

float textureinfo ( string texturename, dataname; output type variable )

Returns data that about a particular texture map, specified by the file name texture-
name. The dataname specifies the piece of information that will be returned in vari-
able. The dataname is known to the renderer and its type and storage class match
that of variable, the named data will be written into variable and textureinfo() will
return a value of 1.0. If the data is unknown or the types do not match, variable will
be unchanged and textureinfo() will return 0.0. Note that textureinfo data is always
uniform. If variable is varying, the appropriate uniform-to-varying conversion will
take place.

The standard data names supported by textureinfo are listed in Table 15.3. A particu-
lar implementation may support additional textureinfo queries.

15.8 Message Passing and Information Functions

float atmosphere ( string paramname; output type variable )
float displacement ( string paramname; output type variable )
float lightsource ( string paramname; output type variable )
float surface ( string paramname; output type variable )
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Name Type Description
”blur” varying float Specifies an additional area to be added to the texture area

filtered in both the s and t directions, expressed in units of
texture coordinates. A value of 1.0 would request that the
entire texture file be blurred into the result. A value of
0.001 would request that one extra texture pixel be added
in the case of a one-thousand by one-thousand texture file.

”sblur” varying float Specifies ”blur” individually in the s direction.
”tblur” varying float Specifies ”blur” individually in the t direction.

”width” uniform float This value multiplies the width of the area being filtered
over in both the s and t directions. A value of 0 effectively
turns off texture antialiasing. The default value is 1.0.

”swidth” uniform float Specifies ”width” individually in the s direction.
”twidth” uniform float Specifies ”width” individually in the t direction.

”samples” uniform float The effective sampling rate when filtering.

”bias” varying float Specifies an additional bias to add to shadow depth
lookups in order to prevent incorrect self-shadowing of
objects.

”filter” uniform string Specifies the name of the filter to use for performing the
percentage-closer filtering over an area of the shadow
map. The default is ”box”. Individual implementations
may allow additional filters.

Table 15.2: Shadow Map Access Parameters

Name Type Description
”resolution” uniform float [2] The highest resolution of the texture map.
”type” uniform string Returns the type of the texture map file: ”tex-

ture”, ”shadow”, or ”environment”.
”channels” uniform float The number of channels in the map.
”viewingmatrix” uniform matrix Returns a matrix that transforms points from

”current” space to the ”camera” space from
which the texture was created. (*).

”projectionmatrix” uniform matrix Returns a matrix that transforms points from
”current” space to a 2D coordinate system
where x and y range from -1 to 1. (*)

(*) ”viewingmatrix” and ”projectionmatrix” are only available for shadow maps or other tex-
tures that were created by rendering an image, and assume a common world-space of all
cameras.

Table 15.3: Data names known to the textureinfo function.
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These functions access the value of the parameter named paramname of one of the
shaders attached to the geometric primitive that is currently being shaded. If the
appropriate shader exists, and a parameter named paramname exists in that shader,
and the parameter is the same type as variable, then the value of that parameter is
stored in variable and the function returns 1; otherwise, variable is unchanged and
the function returns 0.

Note that if the data corresponding to name is uniform, but the variable variable is
varying, the appropriate uniform-to-varying conversion will take place, however, the
reverse case is considered failure.

The lightsource function is only available inside illuminance blocks and refers to the
light being examined by the current iteration.

float incident ( string paramname; output type variable )
float opposite ( string paramname; output type variable )

These functions access the value of the volume shader parameter paramname that
is stored in the volume shaders attached to geometric primitive surface. incident
accesses values from the volume shader that describes the volume which contains
the incident ray I. opposite accesses values from the volume shader that describes
the volume on the other side of the surface. If the named variable exists and is of the
correct type, the value is stored in value and the function returns 1; otherwise, value
is unchanged and the function returns 0.

Note that if the data corresponding to name is uniform, but the variable variable is
varying, the appropriate uniform-to-varying conversion will take place, however, the
reverse case is considered failure.

float attribute ( string name; output type variable )

Returns data that is part of the primitive’s attribute state, either from individual Ren-
derMan Interface calls that set attributes or from the RiAttribute call. The name spec-
ifies the piece of RenderMan Interface attribute state that will be returned in variable.
If the data name is known to the renderer and its type and storage class match that
of variable, the named data will be written into variable and attribute() will return
a value of 1.0. If the data is unknown or the types do not match, variable will be
unchanged and attribute() will return 0.0.

Note that if the data corresponding to name is uniform, but the variable variable is
varying, the appropriate uniform-to-varying conversion will take place, however, the
reverse case is considered failure.

The standard data names supported by attribute are listed in Table 15.4. A particular
implementation may support additional attribute queries.

float option ( string name; output type variable )

Returns data that is part of the renderer’s global option state, either from individual
RenderMan Interface calls that set options or from the RiOption call. The name spec-
ifies the piece of RenderMan Interface option state that will be returned in variable. If
the data name is known to the renderer and its type and storage class match that of
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Name Type
”ShadingRate” uniform float
”Sides” uniform float
”Matte” uniform float
”GeometricApproximation:motionfactor” uniform float
”displacementbound:sphere” (*) uniform float
”displacementbound:coordinatesystem” (*) uniform string
”identifier:name” uniform string

(*) Note that ”displacementbound:sphere” does not return the value exactly as specified
in the RIB file, but rather returns its length in the coordinate system returned by
”displacementbound:coordinatesystem” (which currently always returns ”camera”).

Table 15.4: Data names known to the attribute function.

variable, the named data will be written into variable and option() will return a value
of 1.0. If the data is unknown or the types do not match, variable will be unchanged
and option() will return 0.0. Note that option data is always uniform. If variable is
varying, the appropriate uniform-to-varying conversion will take place.

The standard data names supported by option are listed in Table 15.5. A particular
implementation may support additional option queries.

Name Type Description
”Format” uniform float [3] x resolution, y resolution, pixel aspect ratio.
”DeviceResolution” uniform float [3] The resolution in x and y and the pixel as-

pect ratio. These are usually the three numbers
passed to RiFormat , but may be different when
RiFrameAspectRatio or RiScreenWindow are
non-square.

”FrameAspectRatio” uniform float Frame aspect ratio.
”CropWindow” uniform float [4] Boundaries of the crop window.
”DepthOfField” uniform float [3] Fstop, focallength, focaldistance.
”Shutter” uniform float [2] Shutter open and close time.
”Clipping” uniform float [2] Near and far clip depths.

Table 15.5: Data names known to the option function.

float rendererinfo ( string name; output type variable )

Returns data that about the renderer itself. The name specifies the piece of informa-
tion that will be returned in variable. The the data name is known to the renderer
and its type and storage class match that of variable, the named data will be writ-
ten into variable and rendererinfo() will return a value of 1.0. If the data is unknown
or the types do not match, variable will be unchanged and rendererinfo() will return
0.0. Note that renderer data is always uniform. If variable is varying, the appropriate
uniform-to-varying conversion will take place.
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The standard data names supported by rendererinfo are listed in Table 15.6. A partic-
ular implementation may support additional rendererinfo queries.

Name Type Description
”renderer” uniform string The brand name of the renderer.
”version” uniform float [4] Major, minor, release, and patch numbers.
”versionstring” uniform string The release numbers expressed as a string.

Table 15.6: Data names known to the rendererinfo function.

string shadername ( )
string shadername ( string shadertype )

If no parameter is passed, returns the name of the shader that is currently running. If
the shadertype is supplied, this function returns the name of the shader of the speci-
fied type that is bound to the geometric primitive which is being shaded. Acceptable
values of shadertype are ”surface”, ”displacement”, ”atmosphere”, ”lightsource”, ”inte-
rior”, ”exterior”. If the surface being shaded does not have a shader bound to it which
matches the type, this function will return the empty string (””).
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Section 16

EXAMPLE SHADERS

16.1 Surface Shaders

Surface shaders inherit the surface variables of the surfaces to which they are attached. A
surface shader should always set the output color Ci and optionally the output opacity Oi
that is emitted in the direction -I. I is the direction of the ray incident to the surface. The
length of this vector is equal to the distance between the origin of the ray and the point on
the surface. Thus the actual origin of the ray is available as P-I.

16.1.1 Turbulence

The following surface shader implements a simple turbulence procedural texture. The
shader computes the texture by adding various octaves of noise, weighting each octave
by 1/f , where f is the cutoff frequency of that octave. This texture is then used to mod-
ulate the opacity of the surface. The texture is generated in the named coordinate system
”marble”, which must have been established with by the use of an RiCoordinateSystem
(”marble”) call before the instantiation of the turbulence shader. Notice that after the opac-
ity has been computed, it is multiplied into the color, so that the colors and opacities output
by the shader are premultiplied for use by pixel compositors.

surface
turbulence ( float Kd=.8, Ka=.2 )
{

float a, scale, sum ;
float IdotN;
point M; /* convert to texture coordinate system */
M = transform( ”marble”, P );
scale = 1;
sum = 0;
a = sqrt(area(M));
while( a < scale ) {

sum += scale * float noise(M/scale);
scale *= 0.5;

}
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Oi = sum;
Ci = Cs * Oi * (Ka + Kd * I.N * I.N / (I.I * N.N) );

}

16.1.2 Ray tracer

The following is a procedure to implement a Turner Whitted-style ray tracer.

surface
whitted(

float eta = 1.5; /* index of refraction */
float Kr =.8; /* reflective coefficient */
float Kt =.2; /* transmissive coefficient */
float Ks =.2; /* specular coefficient */
float Kss = 2; /* specular exponent */
float eta = 1.5; ) /* index of refraction */

{
normal Nn = faceforward(normalize(N), I);

/* ambient term */
Ci = Kd * ambient();

/* diffuse and specular terms */
illuminance( P, Nn, PI/2 ) {

/* diffuse */
Ci += Kd * Cl * (L . Nn);

/* specular */
vector H = normalize(normalize(L)+I);
Ci += Ks * Cl * pow(max(0,0, Nn.H), Kss);

}

/* reflection */
Ci += Ks * trace( reflect( I, Nn ) );

/* transmittance */
vector T = refract( I, Nn, (N.I)<0 ? eta : 1/eta );
if ( length(T) != 0.0 )

Ci += Kt * trace( T );
}

16.2 Light Sources

There are several types of light source shaders, distinguished by their directional proper-
ties. The directional properties of light sources depend on whether the sources execute a
solar or an illuminate statement. Light source shaders without explicit illuminate or solar
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statements are assumed to be non-directional, or ambient. The total amount of ambient
light incident on a surface is normally returned to a surface shader through ambient. A so-
lar statement indicates that the light source is a directional light source, while an illuminate
statement indicates that the light source is a local light source. Local light sources have a
position. The position can be a property of the shader or can be inherited from a surface. If
the light source is attached to a geometric primitive the light source is an area light source.

Light sources set Cl inside a solar or illuminate block unless they are defining an ambi-
ent light. Inside these blocks the direction L points towards the surface. This variable is
available so that light source output intensities can be directional. If the light source has a
position, the length of L is the distance from the light source to the surface being shaded.

For example, consider the following light source:

light
phong(

float intensity = 1.0;
color color = 1;
float size = 2.0;
point from = point ”shader” (0,0,0);
point to = point ”shader” (0,0,1); )

{
uniform vector R = normalize(to-from);

solar( R, PI/2 )
Cl = intensity * color * pow( R.L/length(L), size );

}

The Phong shading model can be interpreted to be a procedural directional light source.
The light source has a direction R and a size parameter that controls its fall-off. The solar
statement specifies that the light source casts light in the forward facing hemisphere.

An environment background light source would be specified as follows:

light
reflection( string texturename = ””; float intensity = 1.0 )
{

solar()
Cl = intensity * color environment( texturename, -L );

}

The solar statement implies the light is cast from infinity in all directions. The color of the
light is given by the environment map.

16.3 Volume Shader

Volume shaders change Ci and Oi due to volumetric scattering, self-luminosity, and atten-
uation. A volume shader is called once per ray so it should explicitly integrate along the
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path of the ray.

The input Ci and Oi are the colors and opacities at the point P. The volume shader should
set the color and opacity that result at the point P-I.

16.4 Displacement Shaders

Displacement shaders move the position P of a surface. After a point of the surface is
moved, the normals should be recalculated with calculatenormal unless the new normals
can be computed as part of the displacement.

The following shader places a sinusoidal bump on a surface.

displacement
ripple( float amplitude = 1.0, float wavelength = 0.25 )
{

P += N * amplitude * sin( 2*PI*(s / wavelength) );
N = calculatenormal(P);

}

16.5 Imager Shaders

Imager shaders change the value of Ci and Oi. The exposure and quantization process
specified in the section on Displays in Part I could be specified as the following imager:

imager
exposure( float gain=1.0, gamma=1.0, one = 255, min = 0, max = 255 )
{

Ci = pow( gain * Ci, 1/gamma );
Ci = clamp( round( one * Ci ), min, max );
Oi = clamp( round( one * Oi ), min, max );

}
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Appendix A

STANDARD RENDERMAN INTERFACE SHADERS

In this section the required RenderMan Interface shaders are defined.

A.1 Null Shader

This shader does nothing and is intended to be a placeholder if no action is to be performed.
There is a null shader for every class of shader.

A.2 Surface Shaders

A.2.1 Constant surface

surface
constant ()
{

Oi = Os;
Ci = Os * Cs;

}

A.2.2 Matte surface

surface
matte (

float Ka = 1;
float Kd = 1;)

{
normal Nf = faceforward(normalize(N), I);
Oi = Os;
Ci = Os * Cs * (Ka*ambient() + Kd*diffuse(Nf));

}
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A.2.3 Metal surface

surface
metal (

float Ka = 1;
float Ks = 1;
float roughness =.1;)

{
normal Nf = faceforward(normalize(N), I);
vector V = -normalize(I);
Oi = Os;
Ci = Os * Cs * (Ka*ambient()+Ks*specular(Nf, V, roughness));

}

A.2.4 Shiny metal surface

surface
shinymetal (

float Ka = 1;
float Ks = 1;
float Kr = 1;
float roughness = .1;
string texturename = ””; )

{
normal Nf = faceforward(normalize(N), I);
vector V = -normalize(I);
vector D = reflect(I, normalize(Nf));
D = vtransform(”current”, ”world”, D);
Oi = Os;
Ci = Os * Cs * (Ka*ambient() + Ks*specular(Nf, V, roughness)

+ Kr*color environment(texturename, D));
}

If the Environment Mapping capability is not supported by a particular renderer imple-
mentation, the shinymetal surface shader operates identically to the metal shader.

A.2.5 Plastic surface

surface
plastic (

float Ka = 1;
float Kd =.5;
float Ks =.5;
float roughness =.1;
color specularcolor = 1;)

{
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normal Nf = faceforward(normalize(N), I);
vector V = -normalize(I);
Oi = Os;
Ci = Os * (Cs * (Ka*ambient() + Kd*diffuse(Nf)) +

specularcolor * Ks*specular(Nf, V, roughness) );
}

A.2.6 Painted plastic surface

surface
paintedplastic (

float Ka = 1;
float Kd = .5;
float Ks = .5;
float roughness = .1;
color specularcolor = 1;
string texturename = ””;)

{
normal Nf = faceforward(normalize(N), I);
vector V = -normalize(I);
Oi = Os;
Ci = Os * (Cs * color texture(texturename) *

(Ka * ambient() + Kd * diffuse(Nf)) +
specularcolor * Ks * specular(Nf, V, roughness));

}

If the Texture Mapping capability is not supported by a particular renderer implementation,
the paintedplastic surface shader operates identically to the plastic shader.

A.3 Light Source Shaders

A.3.1 Ambient light source

light
ambientlight (

float intensity = 1;
color lightcolor = 1;)

{
Cl = intensity * lightcolor;

}

A.3.2 Distant light source

light
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distantlight (
float intensity = 1;
color lightcolor = 1;
point from = point ”shader” (0,0,0);
point to = point ”shader” (0,0,1);

{
solar(to-from, 0.0)

Cl = intensity * lightcolor;
}

A.3.3 Point light source

light
pointlight (

float intensity = 1;
color lightcolor = 1;
point from = point ”shader” (0,0,0); )

{
illuminate(from)

Cl = intensity * lightcolor / L.L;
}

A.3.4 Spotlight source

light
spotlight (

float intensity = 1;
color lightcolor = 1;
point from = point ”shader” (0,0,0);
point to = point ”shader” (0,0,1);
float coneangle = radians(30);
float conedeltaangle = radians(5);
float beamdistribution = 2;)

{
float atten, cosangle;
uniform vector A = (to - from)/length(to-from);
illuminate(from, A, coneangle) {

cosangle = L . A / length(L);
atten = pow(cosangle, beamdistribution) / L.L;
atten *= smoothstep(cos(coneangle),

cos(coneangle - conedeltaangle), cosangle);
Cl = atten * intensity * lightcolor;

}
}
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A.4 Volume Shaders

A.4.1 Depth cue shader

volume
depthcue (

float mindistance = 0, maxdistance = 1;
color background = 0;)

{
float d;
d = clamp((depth(P) - mindistance) /

(maxdistance - mindistance), 0.0, 1.0);
Ci = mix(Ci, background, d);
Oi = mix(Oi, color(1, 1, 1), d);

}

A.4.2 Fog shader

volume
fog (float distance = 1; color background = 0;)
{

float d;
d = 1 - exp(-length(I) / distance);
Ci = mix(Ci, background, d);
Oi = mix(Oi, color(1, 1, 1), d);

}

A.5 Displacement Shaders

A.5.1 Bumpy shader

displacement
bumpy (

float Km = 1;
string texturename = ””;)

{
float amp = Km * float texture(texturename, s, t);
P += amp * normalize(N);
N = calculatenormal(P);

}
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A.6 Imager Shaders

A.6.1 Background shader

imager
background ( color background = 1; )
{

Ci += (1-alpha) * background;
Oi = 1;
alpha = 1;

}
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Appendix B

RENDERMAN SHADING LANGUAGE SYNTAX
SUMMARY

This summary of the Shading Language syntax is intended more for aiding comprehension
than as an exact description of the language.

B.1 Declarations

Shading Language source files consist of definitions:

definitions:
shader definition
function definition

shader definition:
shader type identifier ([formals]) { statements }

function definition:
[type] identifier ( [formals] ) { statements }

shader type:
light
surface
volume
displacement
imager

formals:
formal variable definitions
formals ; formal variable definitions

formal variable definitions:
[outputspec] typespec def expressions

variables:
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variable definitions ;
variables variable definitions ;

variable definitions:
[externspec] typespec def expressions

typespec:
[detail] type

def expressions:
def expression
def expressions , def expression

def expression:
identifier [def init]

def init:
= expression

type:
float
string
color
point
vector
normal
matrix
void

detail:
varying
uniform

outputspec:
output

externspec:
extern

B.2 Statements

statements:
statements statement
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statement:
variable definitions ;
assignexpression ;
procedurecall ;
return expression ;
loop modstmt ;
if relation statement
if relation statement else statement
loop control statement

loop control:
while relation
for ( expression ; relation ; expression )
solar ( [expressionlist] )
illuminate ( [expressionlist] )
illuminance ( [expressionlist] )

loop modstmt:
loop mod [integer]

loop mod:
break
continue

B.3 Expressions

The basic expressions are:

expressionlist:
expression [ , expressionlist ]

expression:
primary
expression binop expression
- expression
relation ? expression : expression
typecast expression

primary:
number
stringconstant
texture
identifier
identifier [arrayindex]
procedurecall
assignexpression
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triple
sixteentuple

arrayindex:
[ expression ]

triple:
( expression , expression , expression )

sixteentuple:
( expression , expression , expression , expression ,

expression , expression , expression , expression ,
expression , expression , expression , expression ,
expression , expression , expression , expression )

typecast:
float
string
color [spacetype]
point [spacetype]
vector [spacetype]
normal [spacetype]
matrix [spacetype]

spacetype:
stringconstant

relation:
( relation )
expression relop expression
relation logop relation
! relation

assignexpression:
identifier asgnop expression
identifier [arrayindex] asgnop expression

procedurecall:
identifier ( [proc arguments] )

proc arguments:
expression
proc arguments , expression

texture:
texture type ( texture filename [channel] [texture arguments] )

texture type:
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texture
environment
shadow

texture filename:
expression

channel:
[ expression ]

texture arguments:
, expression
texture arguments , expression

The primary-expression operators

( )

have highest priority and group left-to-right. The unary operators

- !

have priority below the primary operators but higher than any binary or relational operator
and group right-to-left. Binary, relational, and logical operators all group left-to-right and
have priority decreasing as indicated:

binop:
.
/ *
ˆ
+ -

relop:
> >= < <=
== !=

logop:
&&
||

The conditional operator groups right-to-left

? :

Assignment operators all have the same priority and all group right-to-left.

asgnop:
= += -= *= /=
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Logical expressions have the value 1 for true, 0 for false. As in C, a non-zero logical expres-
sion is deemed to be true. In general, logical expressions are only defined for scalar types.
The exception is == and != which are defined for every type.

B.4 Preprocessor

Shading Language compilers will respect ANSI C preprocessor directives, including:

#define identifier token-string
#define identifier ( identifier , ... , identifier ) token string
#undef identifier
#include ”filename”
#include <filename>
#if constant-expression
#ifdef identifier
#ifndef identifier
#else
#endif
#line constant identifier
#pragma token-string

The behaviors of these preprocessor directives should be identical to that expected from an
ANSI C compiler, and it is reasonable to assume that a Shading Language compiler may
use whatever compliant ANSI C preprocessor is available on a system. It should, there-
fore, not be assumed that the preprocessor truly understands the semantics of the Shading
Language. For example, simple constant floating-point or boolean expressions that can be
evaluated at compile time may be used for constant-expression, but not expression involving
vectors or other types specific to the Shading Language.
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Appendix C

LANGUAGE BINDING DETAILS

C.1 ANSI C Binding

The following is the version of ri.h required for the ANSI-standard C binding of the Ren-
derMan Interface.

/*
* RenderMan Interface Standard Include File
* (for ANSI Standard C)
*/

/* Definitions of Abstract Types used in RI */
typedef short RtBoolean;
typedef int RtInt;
typedef float RtFloat;

typedef char *RtToken;

typedef RtFloat RtColor[3];
typedef RtFloat RtPoint[3];
typedef RtFloat RtVector[3];
typedef RtFloat RtNormal[3];
typedef RtFloat RtHpoint[4];
typedef RtFloat RtMatrix[4][4];
typedef RtFloat RtBasis[4][4];
typedef RtFloat RtBound[6];
typedef char *RtString;

typedef void *RtPointer;
#define RtVoid void

typedef RtFloat (*RtFilterFunc)(RtFloat, RtFloat, RtFloat, RtFloat);
typedef RtVoid (*RtErrorHandler)(RtInt, Rtnt, char *);

typedef RtVoid (*RtProcSubdivFunc)(RtPointer, RtFloat);
typedef RtVoid (*RtProcFreeFunc)(RtPointer);
typedef RtVoid (*RtArchiveCallback)(RtToken, char *, ...);

typedef RtPointer RtObjectHandle;
typedef RtPointer RtLightHandle;
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typedef RtPointer RtContextHandle;

/* Extern Declarations for Predefined RI Data Structures */
#define RI_FALSE 0
#define RI_TRUE (! RI_FALSE)
#define RI_INFINITY 1.0e38
#define RI_EPSILON 1.0e-10
#define RI_NULL ((RtToken)0)

extern RtToken RI_FRAMEBUFFER, RI_FILE;
extern RtToken RI_RGB, RI_RGBA, RI_RGBZ, RI_RGBAZ, RI_A, RI_Z, RI_AZ;
extern RtToken RI_PERSPECTIVE, RI_ORTHOGRAPHIC;
extern RtToken RI_HIDDEN, RI_PAINT;
extern RtToken RI_CONSTANT, RI_SMOOTH;
extern RtToken RI_FLATNESS, RI_FOV;
extern RtToken RI_AMBIENTLIGHT, RI_POINTLIGHT, RI_DISTANTLIGHT,

RI_SPOTLIGHT;
extern RtToken RI_INTENSITY, RI_LIGHTCOLOR, RI_FROM, RI_TO, RI_CONEANGLE,

RI_CONEDELTAANGLE, RI_BEAMDISTRIBUTION;
extern RtToken RI_MATTE, RI_METAL, RI_SHINYMETAL,

RI_PLASTIC, RI_PAINTEDPLASTIC;
extern RtToken RI_KA, RI_KD, RI_KS, RI_ROUGHNESS, RI_KR,

RI_TEXTURENAME, RI_SPECULARCOLOR;
extern RtToken RI_DEPTHCUE, RI_FOG, RI_BUMPY;
extern RtToken RI_MINDISTANCE, RI_MAXDISTANCE, RI_BACKGROUND,

RI_DISTANCE, RI_AMPLITUDE;
extern RtToken RI_RASTER, RI_SCREEN, RI_CAMERA, RI_WORLD, RI_OBJECT;
extern RtToken RI_INSIDE, RI_OUTSIDE, RI_LH, RI_RH;
extern RtToken RI_P, RI_PZ, RI_PW, RI_N, RI_NP,

RI_CS, RI_OS, RI_S, RI_T, RI_ST;
extern RtToken RI_BILINEAR, RI_BICUBIC;
extern RtToken RI_LINEAR, RI_CUBIC;
extern RtToken RI_PRIMITIVE, RI_INTERSECTION, RI_UNION, RI_DIFFERENCE;
extern RtToken RI_PERIODIC, RI_NONPERIODIC, RI_CLAMP, RI_BLACK;
extern RtToken RI_IGNORE, RI_PRINT, RI_ABORT, RI_HANDLER;
extern RtToken RI_COMMENT, RI_STRUCTURE, RI_VERBATIM;
extern RtToken RI_IDENTIFIER, RI_NAME, RI_SHADINGGROUP;
extern RtToken RI_WIDTH, RI_CONSTANTWIDTH;

extern RtBasis RiBezierBasis, RiBSplineBasis, RiCatmullRomBasis,
RiHermiteBasis, RiPowerBasis;

#define RI_BEZIERSTEP ((RtInt)3)
#define RI_BSPLINESTEP ((RtInt)1)
#define RI_CATMULLROMSTEP ((RtInt)1)
#define RI_HERMITESTEP ((RtInt)2)
#define RI_POWERSTEP ((RtInt)4)

extern RtInt RiLastError;

/* Declarations of All the RenderMan Interface Subroutines */
extern RtFloat RiGaussianFilter(RtFloat x, RtFloat y,

RtFloat xwidth, RtFloat ywidth);
extern RtFloat RiBoxFilter(RtFloat x, RtFloat y,

RtFloat xwidth, RtFloat ywidth);
extern RtFloat RiTriangleFilter(RtFloat x, RtFloat y,
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RtFloat xwidth, RtFloat ywidth);
extern RtFloat RiCatmullRomFilter(RtFloat x, RtFloat y,

RtFloat xwidth, RtFloat ywidth);
extern RtFloat RiSincFilter(RtFloat x, RtFloat y,

RtFloat xwidth, RtFloat ywidth);

extern RtVoid RiErrorIgnore(RtInt code, RtInt severity, char *msg);
extern RtVoid RiErrorPrint(RtInt code, RtInt severity, char *msg);
extern RtVoid RiErrorAbort(RtInt code, RtInt severity, char *msg);

extern RtVoid RiProcDelayedReadArchive(RtPointer data, RtFloat detail);
extern RtVoid RiProcRunProgram(RtPointer data, RtFloat detail);
extern RtVoid RiProcDynamicLoad(RtPointer data, RtFloat detail);

extern RtContextHandle RiGetContext(void);
extern RtVoid RiContext(RtContextHandle);

extern RtToken
RiDeclare(char *name, char *declaration);

extern RtVoid
RiBegin(RtToken name),
RiEnd(void),
RiFrameBegin(RtInt frame),
RiFrameEnd(void),
RiWorldBegin(void),
RiWorldEnd(void);

extern RtVoid
RiFormat(RtInt xres, RtInt yres, RtFloat aspect),
RiFrameAspectRatio(RtFloat aspect),
RiScreenWindow(RtFloat left, RtFloat right, RtFloat bot, RtFloat top),
RiCropWindow(RtFloat xmin, RtFloat xmax, RtFloat ymin, RtFloat ymax),
RiProjection(RtToken name, ...),
RiProjectionV(RtToken name, RtInt n,RtToken tokens[],RtPointer parms[]),
RiClipping(RtFloat hither, RtFloat yon),
RiClippingPlane(RtFloat x, RtFloat y, RtFloat z,

RtFloat nx, RtFloat ny, RtFloat nz),
RiShutter(RtFloat min, RtFloat max);

extern RtVoid
RiPixelVariance(RtFloat variation),
RiPixelSamples(RtFloat xsamples, RtFloat ysamples),
RiPixelFilter(RtFilterFunc filterfunc, RtFloat xwidth, RtFloat ywidth),
RiExposure(RtFloat gain, RtFloat gamma),
RiImager(RtToken name, ...),
RiImagerV(RtToken name, RtInt n, RtToken tokens[], RtPointer parms[]),
RiQuantize(RtToken type, RtInt one, RtInt min, RtInt max, RtFloat ampl),
RiDisplay(char *name, RtToken type, RtToken mode, ...),
RiDisplayV(char *name, RtToken type, RtToken mode,

RtInt n, RtToken tokens[], RtPointer parms[]);

extern RtVoid
RiHider(RtToken type, ...),
RiHiderV(RtToken type, RtInt n, RtToken tokens[], RtPointer parms[]),
RiColorSamples(RtInt n, RtFloat nRGB[], RtFloat RGBn[]),
RiRelativeDetail(RtFloat relativedetail),
RiOption(RtToken name, ...),
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RiOptionV(RtToken name, RtInt n, RtToken tokens[], RtPointer parms[]);

extern RtVoid
RiAttributeBegin(void),
RiAttributeEnd(void),
RiColor(RtColor color),
RiOpacity(RtColor color),
RiTextureCoordinates(RtFloat s1, RtFloat t1, RtFloat s2, RtFloat t2,

RtFloat s3, RtFloat t3, RtFloat s4, RtFloat t4);

extern RtLightHandle
RiLightSource(RtToken name, ...),
RiLightSourceV(RtToken name,RtInt n,RtToken tokens[],RtPointer parms[]),
RiAreaLightSource(RtToken name, ...),
RiAreaLightSourceV(RtToken name,

RtInt n, RtToken tokens[], RtPointer parms[]);
extern RtVoid

RiIlluminate(RtLightHandle light, RtBoolean onoff),
RiSurface(RtToken name, ...),
RiSurfaceV(RtToken name, RtInt n, RtToken tokens[], RtPointer parms[]),
RiAtmosphere(RtToken name, ...),
RiAtmosphereV(RtToken name,RtInt n,RtToken tokens[],RtPointer parms[]),
RiInterior(RtToken name, ...),
RiInteriorV(RtToken name,RtInt n,RtToken tokens[],RtPointer parms[]),
RiExterior(RtToken name, ...),
RiExteriorV(RtToken name,RtInt n,RtToken tokens[],RtPointer parms[]),
RiShadingRate(RtFloat size),
RiShadingInterpolation(RtToken type),
RiMatte(RtBoolean onoff);

extern RtVoid
RiBound(RtBound bound),
RiDetail(RtBound bound),
RiDetailRange(RtFloat minvis, RtFloat lowtran, RtFloat uptran, RtFloat

maxvis),
RiGeometricApproximation(RtToken type, RtFloat value),
RiOrientation(RtToken orientation),
RiReverseOrientation(void),
RiSides(RtInt sides);

extern RtVoid
RiIdentity(void),
RiTransform(RtMatrix transform),
RiConcatTransform(RtMatrix transform),
RiPerspective(RtFloat fov),
RiTranslate(RtFloat dx, RtFloat dy, RtFloat dz),
RiRotate(RtFloat angle, RtFloat dx, RtFloat dy, RtFloat dz),
RiScale(RtFloat sx, RtFloat sy, RtFloat sz),
RiSkew(RtFloat angle, RtFloat dx1, RtFloat dy1, RtFloat dz1,

RtFloat dx2, RtFloat dy2, RtFloat dz2),
RiDeformation(RtToken name, ...),
RiDeformationV(RtToken name,RtInt n,RtToken tokens[],RtPointer parms[]),
RiDisplacement(RtToken name, ...),
RiDisplacementV(RtToken name,RtInt n,RtToken tokens[],RtPointer

parms[]),
RiCoordinateSystem(RtToken space),
RiCoordSysTransform(RtToken space);
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extern RtPoint *
RiTransformPoints(RtToken fromspace, RtToken tospace, RtInt n,

RtPoint points[]);
extern RtVoid

RiTransformBegin(void),
RiTransformEnd(void);

extern RtVoid
RiAttribute(RtToken name, ...),
RiAttributeV(RtToken name, RtInt n, RtToken tokens[], RtPointer parms[]);

extern RtVoid
RiPolygon(RtInt nverts, ...),
RiPolygonV(RtInt nverts, RtInt n, RtToken tokens[], RtPointer parms[]),
RiGeneralPolygon(RtInt nloops, RtInt nverts[], ...),
RiGeneralPolygonV(RtInt nloops, RtInt nverts[],

RtInt n, RtToken tokens[], RtPointer parms[]),
RiPointsPolygons(RtInt npolys, RtInt nverts[], RtInt verts[], ...),
RiPointsPolygonsV(RtInt npolys, RtInt nverts[], RtInt verts[],

RtInt n, RtToken tokens[], RtPointer parms[]),
RiPointsGeneralPolygons(RtInt npolys, RtInt nloops[], RtInt nverts[],

RtInt verts[], ...),
RiPointsGeneralPolygonsV(RtInt npolys, RtInt nloops[], RtInt nverts[],

RtInt verts[], RtInt n, RtToken tokens[], RtPointer parms[]),
RiBasis(RtBasis ubasis, RtInt ustep, RtBasis vbasis, RtInt vstep),
RiPatch(RtToken type, ...),
RiPatchV(RtToken type, RtInt n, RtToken tokens[], RtPointer parms[]),
RiPatchMesh(RtToken type, RtInt nu, RtToken uwrap,

RtInt nv, RtToken vwrap, ...),
RiPatchMeshV(RtToken type, RtInt nu, RtToken uwrap,

RtInt nv, RtToken vwrap,
RtInt n, RtToken tokens[], RtPointer parms[]),

RiNuPatch(RtInt nu, RtInt uorder, RtFloat uknot[], RtFloat umin,
RtFloat umax, RtInt nv, RtInt vorder, RtFloat vknot[],
RtFloat vmin, RtFloat vmax, ...),

RiNuPatchV(RtInt nu, RtInt uorder, RtFloat uknot[], RtFloat umin,
RtFloat umax, RtInt nv, RtInt vorder, RtFloat vknot[],
RtFloat vmin, RtFloat vmax,
RtInt n, RtToken tokens[], RtPointer parms[]),

RiTrimCurve(RtInt nloops, RtInt ncurves[], RtInt order[],
RtFloat knot[], RtFloat min[], RtFloat max[], RtInt n[],
RtFloat u[], RtFloat v[], RtFloat w[]);

extern RtVoid
RiSphere(RtFloat radius, RtFloat zmin, RtFloat zmax, RtFloat tmax, ...),
RiSphereV(RtFloat radius, RtFloat zmin, RtFloat zmax, RtFloat tmax,

RtInt n, RtToken tokens[], RtPointer parms[]),
RiCone(RtFloat height, RtFloat radius, RtFloat tmax, ...),
RiConeV(RtFloat height, RtFloat radius, RtFloat tmax,

RtInt n, RtToken tokens[], RtPointer parms[]),
RiCylinder(RtFloat radius,RtFloat zmin,RtFloat zmax,RtFloat tmax, ...),
RiCylinderV(RtFloat radius, RtFloat zmin, RtFloat zmax, RtFloat tmax,

RtInt n, RtToken tokens[], RtPointer parms[]),
RiHyperboloid(RtPoint point1, RtPoint point2, RtFloat tmax, ...),
RiHyperboloidV(RtPoint point1, RtPoint point2, RtFloat tmax,

RtInt n, RtToken tokens[], RtPointer parms[]),
RiParaboloid(RtFloat rmax,RtFloat zmin,RtFloat zmax,RtFloat tmax, ...),
RiParaboloidV(RtFloat rmax, RtFloat zmin, RtFloat zmax, RtFloat tmax,
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RtInt n, RtToken tokens[], RtPointer parms[]),
RiDisk(RtFloat height, RtFloat radius, RtFloat tmax, ...),
RiDiskV(RtFloat height, RtFloat radius, RtFloat tmax,

RtInt n, RtToken tokens[], RtPointer parms[]),
RiTorus(RtFloat majrad, RtFloat minrad, RtFloat phimin,

RtFloat phimax, RtFloat tmax, ...),
RiTorusV(RtFloat majrad,RtFloat minrad,

RtFloat phimin, RtFloat phimax, RtFloat tmax,
RtInt n, RtToken tokens[], RtPointer parms[]);

extern RtVoid RiBlobby(RtInt nleaf, RtInt ncode, RtInt code[],
RtInt nflt, RtFloat flt[],
RtInt nstr, RtToken str[], ...);

extern RtVoid RiBlobbyV(RtInt nleaf, RtInt ncode, RtInt code[],
RtInt nflt, RtFloat flt[],
RtInt nstr, RtToken str[],
RtInt n , RtToken tokens[], RtPointer parms[]);

extern RtVoid
RiCurves(RtToken type, RtInt ncurves,

RtInt nvertices[], RtToken wrap, ...),
RiCurvesV(RtToken type, RtInt ncurves, RtInt nvertices[], RtToken wrap,

RtInt n, RtToken tokens[], RtPointer parms[]),
RiPoints(RtInt nverts,...),
RiPointsV(RtInt nverts, RtInt n, RtToken tokens[], RtPointer parms[]),
RiSubdivisionMesh(RtToken mask, RtInt nf, RtInt nverts[],

RtInt verts[],
RtInt ntags, RtToken tags[], RtInt numargs[],
RtInt intargs[], RtFloat floatargs[], ...),

RiSubdivisionMeshV(RtToken mask, RtInt nf, RtInt nverts[],
RtInt verts[], RtInt ntags, RtToken tags[],
RtInt nargs[], RtInt intargs[],
RtFloat floatargs[], RtInt n,
RtToken tokens[], RtPointer *parms);

extern RtVoid
RiProcedural(RtPointer data, RtBound bound,

RtVoid (*subdivfunc)(RtPointer, RtFloat),
RtVoid (*freefunc)(RtPointer)

RiGeometry(RtToken type, ...),
RiGeometryV(RtToken type, RtInt n, RtToken tokens[], RtPointer parms[]);

extern RtVoid
RiSolidBegin(RtToken operation),
RiSolidEnd(void) ;

extern RtObjectHandle
RiObjectBegin(void);

extern RtVoid
RiObjectEnd(void),
RiObjectInstance(RtObjectHandle handle),
RiMotionBegin(RtInt n, ...),
RiMotionBeginV(RtInt n, RtFloat times[]),
RiMotionEnd(void) ;

extern RtVoid
RiMakeTexture(char *pic, char *tex, RtToken swrap, RtToken twrap,

RtFilterFunc filterfunc, RtFloat swidth, RtFloat twidth, ...),
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RiMakeTextureV(char *pic, char *tex, RtToken swrap, RtToken twrap,
RtFilterFunc filterfunc, RtFloat swidth, RtFloat twidth,
RtInt n, RtToken tokens[], RtPointer parms[]),

RiMakeBump(char *pic, char *tex, RtToken swrap, RtToken twrap,
RtFilterFunc filterfunc, RtFloat swidth, RtFloat twidth, ...),

RiMakeBumpV(char *pic, char *tex, RtToken swrap, RtToken twrap,
RtFilterFunc filterfunc, RtFloat swidth, RtFloat twidth,
RtInt n, RtToken tokens[], RtPointer parms[]),

RiMakeLatLongEnvironment(char *pic, char *tex,
RtFilterFunc filterfunc,
RtFloat swidth, RtFloat twidth, ...),

RiMakeLatLongEnvironmentV(char *pic, char *tex,
RtFilterFunc filterfunc,
RtFloat swidth, RtFloat twidth,
RtInt n, RtToken tokens[], RtPointer parms[]),

RiMakeCubeFaceEnvironment(char *px, char *nx, char *py, char *ny,
char *pz, char *nz, char *tex, RtFloat fov,
RtFilterFunc filterfunc, RtFloat swidth, RtFloat ywidth, ...),

RiMakeCubeFaceEnvironmentV(char *px, char *nx, char *py, char *ny,
char *pz, char *nz, char *tex, RtFloat fov,
RtFilterFunc filterfunc, RtFloat swidth, RtFloat ywidth,
RtInt n, RtToken tokens[], RtPointer parms[]),

RiMakeShadow(char *pic, char *tex, ...),
RiMakeShadowV(char *pic, char *tex,

RtInt n, RtToken tokens[], RtPointer parms[]);

extern RtVoid
RiArchiveRecord(RtToken type, char *format, ...),
RiReadArchive(RtToken name, RtArchiveCallback callback, ...),
RiReadArchiveV(RtToken name, RtArchiveCallback callback, char*, ...),

RtInt n, RtToken tokens[], RtPointer parms[]);

extern RtVoid
RiErrorHandler(RtErrorHandler handler);

/*
Error Codes

1 - 10 System and File Errors
11 - 20 Program Limitations
21 - 40 State Errors
41 - 60 Parameter and Protocol Errors
61 - 80 Execution Errors

*/
#define RIE_NOERROR ((RtInt)0)
#define RIE_NOMEM ((RtInt)1) /* Out of memory */
#define RIE_SYSTEM ((RtInt)2) /* Miscellaneous system error */
#define RIE_NOFILE ((RtInt)3) /* File nonexistent */
#define RIE_BADFILE ((RtInt)4) /* Bad file format */
#define RIE_VERSION ((RtInt)5) /* File version mismatch */
#define RIE_DISKFULL ((RtInt)6) /* Target disk is full */
#define RIE_INCAPABLE ((RtInt)11) /* Optional RI feature */
#define RIE_UNIMPLEMENT ((RtInt)12) /* Unimplemented feature */
#define RIE_LIMIT ((RtInt)13) /* Arbitrary program limit */
#define RIE_BUG ((RtInt)14) /* Probably a bug in renderer */
#define RIE_NOTSTARTED ((RtInt)23) /* RiBegin not called */
#define RIE_NESTING ((RtInt)24) /* Bad begin-end nesting */
#define RIE_NOTOPTIONS ((RtInt)25) /* Invalid state for options */
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#define RIE_NOTATTRIBS ((RtInt)26) /* Invalid state for attribs */
#define RIE_NOTPRIMS ((RtInt)27) /* Invalid state for primitives */
#define RIE_ILLSTATE ((RtInt)28) /* Other invalid state */
#define RIE_BADMOTION ((RtInt)29) /* Badly formed motion block */
#define RIE_BADSOLID ((RtInt)30) /* Badly formed solid block */
#define RIE_BADTOKEN ((RtInt)41) /* Invalid token for request */
#define RIE_RANGE ((RtInt)42) /* Parameter out of range */
#define RIE_CONSISTENCY ((RtInt)43) /* Parameters inconsistent */
#define RIE_BADHANDLE ((RtInt)44) /* Bad object/light handle */
#define RIE_NOSHADER ((RtInt)45) /* Can’t load requested shader */
#define RIE_MISSINGDATA ((RtInt)46) /* Required parameters not provided */
#define RIE_SYNTAX ((RtInt)47) /* Declare type syntax error */
#define RIE_MATH ((RtInt)61) /* Zerodivide, noninvert matrix, etc. */

/* Error severity levels */
#define RIE_INFO ((RtInt)0) /* Rendering stats and other info */
#define RIE_WARNING ((RtInt)1) /* Something seems wrong, maybe okay */
#define RIE_ERROR ((RtInt)2) /* Problem. Results may be wrong */
#define RIE_SEVERE ((RtInt)3) /* So bad you should probably abort */
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C.2 RIB Binding

The RenderMan Interface Bytestream Protocol, abbreviated RIB, is a byte-oriented protocol
for specifying requests to the RenderMan Interface (RI) library. RIB permits clients of the
RenderMan Interface to communicate requests to a remote rendering service, or to save
requests in a file for later submission to a renderer. To satisfy the many different needs of
clients, the protocol is designed to provide both

• an understandable (potentially) interactive interface to a rendering server, and

• a compact encoded format that minimizes transmission time (and space when stored
in a file)

RIB also strives to minimize the amount of communication from a server to a client. This
is particularly important in the situation where no communication is possible; e.g., when
recording RIB in a file.

RIB is a byte stream protocol. That is, RIB interpreters work by scanning the input stream
one byte at a time. This implies interpreters should make no assumptions about data align-
ment. The protocol is best thought of as a command language where tokens in the input
stream can be transmitted either as 7-bit ASCII strings or, optionally, as compressed binary
data. The ASCII interface provides a convenient interface for users to interactively commu-
nicate with a rendering server and for developers to debug systems that generate RIB. The
binary encoding significantly compresses the data stream associated with an RI description
with an associated savings in communication overhead and/or file storage cost.

C.2.1 Syntax rules

RenderMan Interface Protocol requests are constructed from sequences of tokens. Tokens
are formed by the input scanner by grouping characters according to the RIB syntax rules
(described below). Other than requirements associated with delimiting tokens, RIB em-
ploys a free format syntax.

Character set

The standard character set is the printable subset of the ASCII character set, plus the char-
acters space, tab, and newline (return or line-feed). Non-printing characters are accepted,
but are discouraged as they impair portability.

The characters space, tab, and newline are referred to as white space characters and are
treated equivalently (except when they appear in comments or strings). White space is
used to delimit syntactic constructs such as identifiers or numbers. Any number of consec-
utive white space characters are treated as a single white space character.

The characters ‘”’, ’#’, ’[’, and ’]’ are special: they delimit syntactic entities. All other charac-
ters are termed regular characters and may be used in constructing syntactic entities such as
identifiers and numbers.
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Comments

Any occurrence of the ’#’ character, except when in a string, indicates a comment. The com-
ment consists of all characters between the ’#’ and the next newline character. Comments
are treated as white space when they are encountered by the input scanner.

Numbers

Numbers include signed integers and reals. An integer consists of an optional sign (‘+’, ‘-’)
followed by one or more decimal digits. The number is interpreted as a signed decimal
integer.

A real consists of an optional sign and one or more decimal digits, with an embedded
period (decimal point), a trailing exponent, or both. The exponent, if present, consists of
‘E’ or ‘e’ followed by an optional sign and one or more decimal digits. The number is
interpreted as a real number and converted to an internal floating point value.

Strings

A string is an arbitrary sequence of characters delimited by double quote marks (‘ ” ’).
Within a string the only special characters are ‘”’ and the ‘\’ (back-slash) character. The
‘\’ character is used as an ‘escape’ to include the ‘ ” ’ character, non-printing characters, and
the ‘\’ character itself. The character immediately following the ‘\’ determines the precise
interpretation, as follows:

\n linefeed (newline)
\r carriage return
\t horizontal tab
\b backspace
\f form feed
\\ backslash
\” double quote
\ddd character code ddd (octal)
\newline no character – both are ignored

If the character following the ‘\’ is not one of the above, the ‘\’ is ignored.

The \ddd form may be used to include any 8-bit character constant in a string. One, two, or
three octal digits may be specified (with high-order overflow ignored).

The \newline form is used to break a string into a number of lines but not have the newlines
be part of the string.

Names

Any token that consists entirely of regular characters and that cannot be interpreted as a
number is treated as a name. All characters except specials and white space can appear in
names.
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Arrays

The characters ‘[’ and ‘]’ are self-delimiting tokens that specify the construction of an array
of numbers or strings. An array cannot contain both numbers and strings. If an array
contains at least one floating point value, all integer values in the array are converted to
floating point. Arrays of numbers are used, for example, to specify matrices and points.
Arrays of strings are used in specifying options.

Binary encoding

For efficiency, compressed binary encodings of many types of data are also supported.
These encodings may be freely intermixed with the normal ASCII strings. The two encod-
ings are differentiated by the top bit of the eight-bit bytes in the input stream. If the top bit
is zero, then the byte is interpreted as a 7-bit ASCII character. Otherwise, if the top bit is
one, the byte is interpreted as a compressed token according to the rules given below. This
differentiation is not applied within string constants or the parameter bytes which follow
the initial byte of a compressed token. Table C.1 shows the encoding for compressed tokens
with all byte values displayed in octal.

Values Span Interpreted as...
0–0177 128 ASCII characters
0200–0217 16 encoded integers and fixed-point numbers
0220–0237 16 encoded strings of no more than 15 characters
0240–0243 4 encoded strings longer than 15 characters
0244 1 encoded single precision IEEE floating point value
0245 1 encoded double precision IEEE floating point value
0246 1 encoded RI request
0247–0307 32 nothing (reserved)
0310–0313 4 encoded single precision array (length follows)
0314 1 define encoded request
0315–0316 2 define encoded string token
0317–0320 2 interpolate defined string
0321–0377 46 nothing (reserved)

Table C.1: Binary Encoding

Four separate data types are supported: signed integers, signed fixed-point numbers, strings,
and floating-point numbers. Integers and fixed-point numbers are encoded using a single
format while strings are encoded with two different formats according to the length of
the string. Both single- and double-precision IEEE format floating-point numbers are sup-
ported. Strings that are used repeatedly can be defined and then subsequently referenced
with a compact form that is usually more space efficient.

Arrays of floating-point values are directly supported for efficiency (they can also be spec-
ified using the array definition symbols). Single-precision matrices (arrays of 16 floating-
point values) can be specified in a total of 66 bytes, while other arrays may require slightly
more.
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In the following sections the syntax for each encoding is presented as a sequence of bytes
separated by ‘| ’ symbols. Numeric values should interpreted as octal values (base 8) if
they have a leading ‘0’ digit, otherwise as decimal values. Items shown in angle brackets
‘< >’ represent varying items, such as a numeric value or string that is being encoded.

Integers and fixed-point numbers. Integer and fixed-point values can be transmitted in
2-5 bytes. The encoded token has the form:

0200 + (d · 4) + w | <value>

where the next w + 1 bytes form a signed integer taken from the most significant byte to
the least significant byte, and the bottom d bytes are after the decimal point.

Strings. Strings shorter than 16 bytes, say w bytes, can be transmitted with a prefixing
token:

0220 + w | <string>

Other strings must use a prefixing token followed by a variable length string length, and
then followed by the string itself:

0240 + ` | <length> | <string>

where `+1 is the number of bytes needed to specify the length of the string, 0 ≤ ` ≤ 3. The
string length is an unsigned value and is transmitted from most significant byte to least
significant byte. Unlike unencoded strings, there are no escape or special characters in an
encoded string.

Defining strings. For strings that are to be transmitted repeatedly, a string token can be
defined with:

0315 + w | <token> | <string>

where w + 1 is the number of bytes needed to specify the token, (1 or 2), and the string
being defined is transmitted in an encoded or unencoded form. The token is an unsigned
value and is transmitted from most significant byte to least significant byte. For efficiency,
the range of tokens defined should be as compact as possible.

Referencing defined strings. To interpolate a string that has previously been defined (as
described above), the following is used:

0317 + w | <token>

where the token refers to the string to be interpolated.

Floating-point values. Floating-point values are transmitted in single-precision or double-
precision IEEE format from most significant byte to least significant byte. Single-precision
floating-point values occupy four bytes in the input stream and double-precision values
occupy eight bytes.

Floating point arrays. Aggregates of single-precision floating-point values can be trans-
mitted with a prefixing token byte. Variable sized arrays are transmitted as a token byte
followed by a variable length array size, and then followed by the array itself:

0310 + ` | <length> | <array of floats>

The array length is an unsigned value, ` + 1 bytes long, and is transmitted from most
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significant byte to least significant byte.

Defining RI requests. Before an encoded request can be used, it must first be bound to its
ASCII equivalent with:

0314 | <code> | <string>

where the code is one byte and string is the ASCII form of the request.

Referencing defined RI requests. A previously defined RI request is referenced with two
bytes; a prefixing token, 0246, followed by a request code.

0246 | <code>

This means that no more than 256 RI requests can be directly encoded in the binary proto-
col.

Example. Consider the following sequence of RIB commands:

version 3.03
ErrorHandler ”print”
Display ”test.25.pic” ”file” ”rgba”
Format 512 307 1
Clipping 0.1 10000
WorldBegin
Declare ”direction” ”point”
LightSource ”windowlight” 0 ”direction” [1 0 -0.1]
Color [1 1 1]
Orientation ”lh”
Sides 1
AttributeBegin
MotionBegin [0 1]
Translate 1.91851 0.213234 1.55
Sphere 2 -0.3 1.95 175
MotionEnd
AttributeEnd

This could translate into the encoded sequence of bytes shown in Figure C.1.

Version Number

The RIB stream supports a special version request that is used internally to ensure that the
syntax of the stream is compatible with the parser being used.

version num Specifies the protocol version number of the RIB stream. The stream
specified in this document is version 3.03. A RIB parser may refuse to
parse streams with incompatible version numbers.
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C.2.2 Error handling

There are two types of errors that may be encountered while processing a RIB input stream:
syntactic errors and semantic errors. Syntactic errors occur when the stream of tokens fails to
form a syntactically legal statement or request. For example, a syntactic error occurs when
a required parameter is missing, or when a string is left unterminated. Semantic errors
occur when a syntactically legal statement contains incorrect data; e.g., when a parameter
that must be non-negative is specified to be -1.

RIB defines a number of syntactic errors and a limited number of semantic errors. In theory
RIB should be responsible only for syntactic errors. However, due to the weak typing of
programming languages such as C, semantic errors that can not be easily recognized within
the RenderMan Interface software are checked at the RIB level. For example, RIB checks
arrays that are to be converted to matrices to be sure they have 16 values.

Table C.2 shows the set of errors recognized by RIB. Detailed descriptions of the errors are
given below.

All errors encountered by a RIB interpreter require some associated action to be performed.
In the case of syntax errors, if input processing is to be continued, the input scanner must
resynchronize itself with the input stream. This synchronization is done by reading and
discarding tokens from the input stream until a valid RIB request token is encountered.
That is, any tokens between the point of the syntax error and the next request token are
discarded. The protocol has been designed so that no more than one request (along with
any associated parameters) must be discarded when recovering from an error.

Errors are handled in one of three ways:

• They are ignored and the rendering process will proceed to its completion no matter
what input stream is provided.

• They cause diagnostic messages to be generated on the renderer’s standard error
stream, but they are otherwise ignored (the default).

• The first error causes a diagnostic message to be generated and the renderer termi-
nates immediately without creating an image.

If the RIB interpreter is acting as a network server, in direct communication with a client
application, the interpreter may send parsing error signals back to the client. These signals
take the form of the following RIB requests, though they are not valid in the client-to-server
stream. None of these error requests have arguments. Note that some errors may not be
recognized immediately by a RIB interpreter upon parsing a request. This may be due to
buffering or queuing built into the interface between the intepreter and the renderer. In a
client-server environment this may have implications for the client application.

arraytoobig The interpreter was unable to allocate sufficient memory to store an
array specified in the input stream. This error is dependent on the
interpreter’s implementation. Good implementations of a RIB inter-
preter support arrays as large as memory will permit.
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Name Description
arraytoobig insufficient memory to construct array
badargument incorrect parameter value
badarray invalid array specification
badbasis undefined basis matrix name
badcolor invalid color specification
badhandle invalid light or object handle
badparamlist parameter list type mismatch
badripcode invalid encoded RIB request code
badstringtoken undefined encoded string token
badtoken invalid binary token
badversion protocol version number mismatch
limitcheck overflowing an internal limit
outofmemory generic instance of insufficient memory
protocolbotch malformed binary encoding
stringtoobig insufficient memory to read string
syntaxerror general syntactic error
unregistered undefined RIB request

Table C.2: RIB Errors

badargument The RIB interpreter encountered an invalid parameter value in parsing
a request.
EXAMPLE

Polygon ”N” [...] # no ”P” specified
PointsGeneralPolygons [2 2] [4 3 4]... # bad nloops

badarray The number of items in an array is inappropriate for the specified pa-
rameter, or an array has both string and number elements. EXAMPLE

Basis [0 1 2 3] Cone [1.5] Bound [0 1 0 ”oops” ]

badbasis The basis matrix name specified in a basis request is not known by the
RIB interpreter.
EXAMPLE

Basis ”my-favorite-basis”

badcolor An invalid color was supplied as a parameter to a request. That is, an
array was specified with an incorrect number of elements.
EXAMPLE

Opacity [.5 1] # with 3-channel colors
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badhandle An invalid light or object handle was supplied as a parameter to an
Illuminate , ObjectInstance , LightSource , AreaLightSource , or Ob-
jectBegin request. For Illuminate , the light handle must be an inte-
ger value specified in a previous LightSource or AreaLightSource
request. For ObjectInstance , the object handle must be an integer
value specified in a previous ObjectBegin request. For LightSource ,
AreaLightSource , and ObjectBegin this error is raised if the number
specified for a light handle is significantly larger than any previous
handle; for example, specifying 3000 when the largest previous han-
dle was 10 (this is used as a “sanity check” to guard against corrupted
input data).
EXAMPLE

LightSource ”finite” 1
Illuminate 99999

badparamlist In a token-value pair of a parameter list, the type of a value did not
agree with the declared type of the token.
EXAMPLE

Declare ”gridsize” ”uniform float[2]”
Option ”limits” ”gridsize” ”not a number”

badripcode A binary encoded token that specified a RIB request used an unde-
fined request code. Request codes must be defined, prior to their use,
with the binary encoding protocol; see the section on Binary Encoding.

badstringtoken A binary encoded string token referenced a string that had not pre-
viously been defined. The binary encoding scheme is described in
Binary encoding.

badtoken A byte with the most significant bit set was not recognized as a valid
binary encoding. The binary encoding scheme is described in Binary
encoding.
EXAMPLE

\300

badversion The RIB protocol version number specified in a version request was
greater than the protocol version number of the interpreter. SEE ALSO
version

limitcheck An internal limit was encountered during normal operation of the in-
terpreter. Implementers of RIB interpreters are expected to avoid im-
posing arbitrary limits. Some implementations may, however, need to
limit the maximum size of strings, arrays, etc. due to memory con-
straints.
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outofmemory The interpreter ran out of memory in the normal course of operation.
Interpreters are expected to utilize whatever memory is available in
their operating environment. If only a limited amount of memory is
present on the machine they are operating on, they may restrict their
use. If memory is arbitrarily limited, however, running out of space
should result in a limitcheck error, not outofmemory.

protocolbotch A protocol error was encountered while parsing binary encoded data
in the input stream. In particular, when defining a string or request
code, an expected string was not encountered. The binary encoding
scheme is described in Binary encoding.

stringtoobig The interpreter ran out of space while parsing a string. This error is a
specific instance of the outofmemory error. SEE ALSO outofmemory,
limitcheck

syntaxerror he interpreter recognized a syntax error of indeterminate nature. Syn-
tax errors can occur from unterminated strings or invalid numbers.
EXAMPLE

”this is an unterminated string
01a3 # invalid integer

unregistered The interpreter encountered a name token that was not a valid request.
This is usually due to misspelling a request name, or not enclosing a
string in quote marks (”).
EXAMPLE

Basis power
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v e r s i o n 212 # version
003 007 256 E r r o r # 3.03 Error

H a n d l e r 225 # Handler "
p r i n t D i s # print" Dis
p l a y 315 \0 233 t # play <defstr 0 "t
e s t . 2 5 . p # est.25.p
i c 317 \0 315 001 224 f # ic"> <str 0> <defstr 1 "f
i l e 317 001 315 002 224 # ile"> <str 1> <defstr 2 "
r g b a 317 002 F o # rgba"> <str 2> Fo
r m a t 201 002 \0 201 # rmat 512

001 3 200 001 C l i p # 307 1 Clip
p i n g 211 031 231 201 # ping 0.1
’ 020 314 272 232 W o r # 10000 <defreq 0272 "Wor
l d B e g i n 246 # ldBegin"> <req

272 314 207 227 D e c l # 0272> <defreq 0207 "Decl
a r e 246 207 315 003 231 # are"> <req 0207> <defstr 3 "
d i r e c t i o # directio
n 317 003 315 004 225 p o # n"> <str 3> <defstr 4 "po
i n t 317 004 314 224 233 # int"> <str 4> <defreq 0224 "
L i g h t S o u # LightSou
r c e 246 224 315 005 233 # rce"> <req 0224> <defstr 5 "
w i n d o w l i # windowli
g h t 317 005 200 001 317 # ght"> <str 5> 1 <str

003 310 003 ? 200 \0 \0 \0 # 3> [1
\0 \0 \0 275 314 314 315 314 # 0 -0.1] <defreq

203 225 C o l o r 246 # 0203 "Color"> <req
203 310 003 ? 200 \0 \0 ? # 0203> [1
200 \0 \0 ? 200 \0 \0 314 # 1 1] <defreq
237 233 O r i e n t # 0237 "Orient

a t i o n 246 237 315 # ation"> <req 0237> <defstr
006 222 l h 317 006 314 254 # 6 "lh"> <str 6> <defreq 0254
225 S i d e s 246 254 # "Sides"> <req 0254>
200 001 314 177 236 A t t # 1 <defreq 0177 "Att

r i b u t e B e # ributeBe
g i n 246 177 314 227 233 # gin"> <req 0177> <defreq 0227 "
M o t i o n B e # MotionBe
g i n 246 227 310 002 \0 # gin"> <req 0227> [

\0 \0 \0 ? 200 \0 \0 314 # 0 1] <defreq
270 231 T r a n s l # 0270 "Transl

a t e 246 270 212 001 353 # ate"> <req 0270> 1.91851
# 211 6 226 212 001 214 314 # 0.213234 1.55

314 260 226 S p h e r # <defreq 0260 "Spher
e 246 260 200 002 211 263 4 # e"> <req 0260> 2 -0.3

212 001 363 3 201 \0 257 314 # 1.95 1.75 <defreq
230 231 M o t i o n # 0230 "Motion

E n d 246 230 314 200 234 # End"> <req 0230> <defreq 0200 "
A t t r i b u t # Attribut
e E n d 246 200 # eEnd"> <req 0200>

Figure C.1: Example encoded RIB byte stream
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Appendix D

RENDERMAN INTERFACE BYTESTREAM
CONVENTIONS

Version 1.1

File structuring conventions for RIB files are presented to facilitate the use of RIB as a file
format for rendering interchange. A format for single User Entities is presented to allow
importing external models into existing RIB streams. Finally, we describe a rendering ser-
vices file format that will enable Render Managers to provide services to a specific renderer.

D.1 RIB File Structuring Conventions

The RenderMan Interface Bytestream (RIB) is a complete specification of the required in-
terface between modelers and renderers. In a distributed modeling and rendering envi-
ronment RIB serves well as a rendering file format. As RIB files are passed from one site to
another, utilities for shader management, scene editing, and rendering job dispatching (re-
ferred to hereafter as Render Managers) can benefit from additional information not strictly
required by rendering programs. Additional information relating to User Entities, resource
requirements and accounting can be embedded in the RIB file by a modeler through the
“proper” use of RIB in conjunction with some simple file structuring conventions.

This section lays out a set of RIB file format conventions which are patterned loosely after
the model put forth in Adobe’s “Document Structuring Conventions.”

D.1.1 Conforming files

The conventions outlined in this section are optional in the sense that they are not inter-
preted by a renderer and thus will not have any effect on the image produced. Although
a Render Manager may require conformance to these conventions, it may choose to uti-
lize or ignore any subset of the structural information present in the RIB file. A RIB file
is said to be conforming if it observes the Pixar RIB File Structuring Conventions, and the
conforming file can be expected to adhere to specific structuring constraints in that case.
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Using RIB File structuring conventions

These conventions are designed to facilitate communication between modeling/anima-
tion systems and network rendering management systems. In a distributed environment
many decisions relating to the final appearance of rendered frames may need to be de-
ferred until the selection of a particular renderer can be made. A render management
system should provide the ability to tailor the scene to the resources and capabilities of
the available rendering and output systems. Unfortunately, a modeling/animation system
cannot, in general, assume that any particular render management services are available.
The following strategies should thus be adopted with the goal of making a RIB file reason-
ably self-contained and renderer-independent:

• Any nonstandard shaders, optional RenderMan features (motion blur, CSG, level of
detail) or textures should be flagged as special resource requirements.

• Renderer-specific options or attributes should be specified according to the special
comment conventions described below.

• Display-dependent RenderMan options should not be included except to indicate to
Render Managers that such options are mandatory.

D.1.2 RIB File structure conventions

Following is a structured list of components for a conforming RIB file that diagrams the
“proper” use of RIB. Some of the components are optional and will depend greatly on the
resource requirements of a given scene.

Scope

Indentation indicates the scope of the following command.

Preamble and global variable declarations (RIB requests: version, declare)
Static options and default attributes (image and display options, camera options)
Static camera transformations (camera location and orientation)
Frame block (if more than one frame)

Frame-specific variable declarations
Variable options and default attributes
Variable camera transforms
World block

(scene description)
User Entity (enclosed within AttributeBegin /AttributeEnd )
User Entity (enclosed within AttributeBegin /AttributeEnd )
User Entity

more frame blocks

This structure results from the vigorous application of the following Scoping Conventions:
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• No attribute inheritance should be assumed unless implicit in the definition of the
User Entity (i.e., within a hierarchy).

• No attribute should be exported except to establish either global or local defaults.

The RenderMan Specification provides block structuring to organize the components of a
RIB file. Although the use of blocks is only required for frame and world constructs by
the Specification, the liberal use of attribute and transform blocks is encouraged. A mod-
eler enables a Render Manager to freely manipulate, rearrange, or delete scene elements
(frames, cameras, lights, User Entities) by carefully bounding these elements in the RIB file
according to scope. A Render Manager might, for example, strip all of the frames out of
a RIB file and distribute them around a network of rendering servers. This, of course, is
only possible if the RIB file has been structured in such a way as to bound those things
pertaining to a given frame within its frame block and those things pertaining to all frames
outside and before all frame blocks.

User Entities

A User Entity couples a collection of geometric primitives and/or User Entities with shad-
ing and geometric attributes. As such it introduces a level of scope that is more local than
that implied by the RenderMan world block. Typically, the term User Entity refers to a
geometric element within a scene whose attributes or position a user may wish to mod-
ify or tweak. Because there is some computational expense associated with attribute block
structuring, there is an intrinsic trade-off between control over individual User Entities and
rendering time/memory requirements. At one extreme, the entire scene is made up of one
User Entity within one attribute block. At the other extreme, each polygon is a User Entity
and the renderer is forced to spend most of its time managing the graphics state. Modeling
programs and their users may wish to carefully weigh this trade-off.

The Scoping Conventions above prescribe the following User Entity Conventions:

• All User Entities must be delimited by an attribute block.

• All User Entities must have an identifier attribute that uniquely characterizes that En-
tity to the user. Two special identifier attributes are provided to distinguish between
Entities organized by a geometric relationship (the name identifier) and Entities or-
ganized according to material makeup (the shadinggroup identifier).

• A User Entity must be completely described within its attribute block.

Nonportable options and attributes

The following list of RIB requests are restricted as they either limit the device indepen-
dence of the file or they control rendering quality or speed parameters. Render managers
should provide this kind of control to users at render time. The inclusion of these restricted
requests by a modeler should indicate to a Render Manager that they are, in some sense,
mandatory. When including nonportable options or attributes in the RIB file, they should
be located contiguously (according to scope) in a RIB file.
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Attribute Format PixelFilter ShadingRate
ColorSamples FrameAspectRatio PixelSamples
Cropwindow Imager PixelVariance
Exposure Option Quantize

D.1.3 Conventions for structural hints

The ‘##’ character sequence is used to designate structural hints. Any characters found af-
ter these special characters and before the next newline character are construed as special
hints intended for Render Managers. Such hints should conform to the conventions out-
lined herein and should provide structural, resource, or administrative information which
cannot easily be incorporated into or derived from the standard RIB stream. The same
scoping considerations which apply to RIB should also be applied toward special com-
ments.

Header information

Header information must be located immediately beginning any conforming RIB file. These
hints should provide scene-global administrative and resource information. Header entries
should precede any RIB requests and must be contiguous. If a header entry appears twice
in a file, the first occurrence should be considered to be the true value.

##RenderMan RIB-Structure 1.1 [ keyword ]
This entry should be the first line in a conforming RIB file. Its inclusion indicates
full conformance to these specifications. The addition of the special keyword, Entity,
specifies that the file conforms to the User Entity conventions described in the Rib
Entity Files section.

##Scene name
This entry allows a scene name to be associated with the RIB file.

##Creator name
Indicates the file creator (usually the name of the modeling or animation software).

##CreationDate time
Indicates the time that the file was created. It is expressed as a string of characters
and may be in any format.

##For name
Indicates the user name or user identifier (network address) of the individual for
whom the frames are intended.

##Frames number
Indicates the number of frames present in the file.

##Shaders shader1, shader2, ...
Indicates the names of nonstandard shaders required. When placed in the header of a
RIB file, any nonstandard shaders that appear in the entire file should be listed. When
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placed within a frame block, any nonstandard shaders that appear in that frame must
be listed.

##Textures texture1, texture2, ...
Lists any preexisting textures required in the file. When placed in the header of a RIB
file, any preexisting textures that appear anywhere in the file should be listed. When
placed within a frame block, any preexisting shaders that appear in that frame must
be listed.

##CapabilitiesNeeded feature1, feature2, ...
Indicates any RenderMan Interface optional capabilites required in the file (when
located in the header) or required in the frame (when located at the top of a frame
block). The optional capabilities are:

Area Light Sources Motion Blur Special Camera Projections
Bump Mapping Programmable Shading Spectral Colors
Deformations Radiosity Texture Mapping
Displacements Ray Tracing Trim Curves
Environment Mapping Shadow Depth Mapping Volume Shading
Level Of Detail Solid Modeling

See Part I, Section 1, Introduction, for a description of these capabilities.

Frame information

Frame-local information must be located directly after a FrameBegin RIB request and be
contiguous. These comments should provide frame-local information that contains ad-
ministrative and resource hints.

##CameraOrientation eyex eyey eyez atx aty atz [ upx upy upz ]
Indicates the location and orientation of the camera for the current frame in World
Space coordinates. The up vector is optional and the default value is [0 1 0].

##Shaders shader1, shader2,...
Lists the nonstandard shaders required in the current frame.

##Textures texture1, texture2,...
Lists the nonstandard textures required in the current frame.

##CapabilitiesNeeded feature1, feature2,...
Lists the special capabilities required in the current frame from among those listed
under Header Information.

Body Information

Body information may be located anywhere in the RIB file.
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##Include filename
This entry allows the specification of a file name for inclusion in the RIB stream. Note
that the Include keyword itself does not cause the inclusion of the specified file. As
with all structural hints, the Include keyword serves only as a special hint for render
management systems. As such, the Include keyword should only be used if render
management facilities are known to exist.

D.1.4 RIB File structuring example

##RenderMan RIB-Structure 1.1
##Scene Bouncing Ball
##Creator /usr/ucb/vi
##CreationDate 12:30pm 8/24/89
##For RenderMan Jones
##Frames 2
##Shaders PIXARmarble, PIXARwood, MyUserShader
##CapabilitiesNeeded ShadingLanguage Displacements
version 3.03
Declare "d" "uniform point"
Declare "squish" "uniform float"
Option "limits" "bucketsize" [6 6] #renderer specific
Option "limits" "gridsize" [18] #renderer specific
Format 1024 768 1 #mandatory resolution
Projection "perspective"
Clipping 10 1000.0
FrameBegin 1
##Shaders MyUserShader, PIXARmarble, PIXARwood
##CameraOrientation 10.0 10.0 10.0 0.0 0.0 0.0
Transform [.707107 -.408248 -.57735 0

0 .816497 -.57735 0
-.707107 -.408248 -.57735 0
0 0 17.3205 1 ]

WorldBegin
AttributeBegin
Attribute "identifier" "name" "myball"
Displacement "MyUserShader" "squish" 5
AttributeBegin
Attribute "identifier" "shadinggroup" ["tophalf"]
Surface "PIXARmarble"
Sphere .5 0 .5 360
AttributeEnd
AttributeBegin
Attribute "identifier" "shadinggroup" ["bothalf"]
Surface "plastic"
Sphere .5 -.5 0. 360
AttributeEnd
AttributeEnd
AttributeBegin
Attribute "identifier" "name" ["floor"]
Surface "PIXARwood" "roughness" [.3] "d" [1]
# geometry for floor
Polygon "P" [-100. 0. -100. -100. 0. 100. 100. 0. 100. 10.0 0. -100.]
AttributeEnd
WorldEnd
FrameEnd
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FrameBegin 2
##Shaders PIXARwood, PIXARmarble
##CameraOrientation 10.0 20.0 10.0 0.0 0.0 0.0
Transform [.707107 -.57735 -.408248 0

0 .57735
-.815447 0
-.707107 -.57735 -.408248 0
0 0 24.4949 1 ]

WorldBegin
AttributeBegin
Attribute "identifier" "name" ["myball"]
AttributeBegin
Attribute "identifier" "shadinggroup" ["tophalf"]
Surface "PIXARmarble"
ShadingRate .1
Sphere .5 0 .5 360
AttributeEnd
AttributeBegin
Attribute "identifier" "shadinggroup" ["bothalf"]
Surface "plastic"
Sphere .5 -.5 0 360
AttributeEnd
AttributeEnd
AttributeBegin
Attribute "identifier" "name" ["floor"]
Surface "PIXARwood" "roughness" [.3] "d" [1]
# geometry for floor
AttributeEnd
WorldEnd
FrameEnd

D.2 RIB Entity Files

A RIB Entity File contains a single User Entity. RIB Entity Files are incomplete since they do
not contain enough information to describe a frame to a renderer. RIB Entity Files depend
on Render Management services for integration into “legal,” or complete, RIB Files. These
files provide the mechanism for 3-D “clip-art” by allowing Render Managers to insert ob-
jects into preexisting scenes.

RIB Entity Files must conform to the User Entity Conventions described in the User Entites
section. To summarize, a User Entity must be delimited by an attribute block, must have
a name attribute, and must be completely contained within a single attribute block. Three
additional requirements must also be met:

• The header hint: ##RenderMan RIB-Structure 1.1 Entity must be included as the first
line of the file.

• The Entity must be built in an object coordinate system which is centered about the
origin.

• The Entity must have a RIB bound request to provide a single bounding box of all
geometric primitives in the User Entity.
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D.2.1 RIB Entity File example

##RenderMan RIB-Structure 1.1 Entity
AttributeBegin #begin unit cube
Attribute "identifier" "name" "unitcube"
Bound -.5 .5 -.5 .5 -.5 .5
TransformBegin
# far face
Polygon "P" [.5 .5 .5 -.5 .5 .5 -.5 -.5 .5 .5 -.5 .5]
Rotate 90 0 1 0
# right face
Polygon "P" [.5 .5 .5 -.5 .5 .5 -.5 -.5 .5 .5 -.5 .5]
# near face
Rotate 90 0 1 0
Polygon "P" [.5 .5 .5 -.5 .5 .5 -.5 -.5 .5 .5 -.5 .5]
# left face
Rotate 90 0 1 0
Polygon "P" [.5 .5 .5 -.5 .5 .5 -.5 -.5 .5 .5 -.5 .5]
TransformEnd
TransformBegin
# bottom face
Rotate 90 1 0 0
Polygon "P" [.5 .5 .5 -.5 .5 .5 -.5 -.5 .5 .5 -.5 .5]
TransformEnd
TransformBegin
# top face
Rotate -90 1 0 0
Polygon "P" [.5 .5 .5 -.5 .5 .5 -.5 -.5 .5 .5 -.5 .5]
TransformEnd
AttributeEnd #end unit cube

D.3 RenderMan Renderer Resource Files

Renderer Resource Files are intended to provide information to Render Managers and
modelers about the specific features, attributes, options, and resources of a particular ren-
derer. In an environment where multiple renderers are available, a Render Manager can
provide the user with the ability to tailor RIB file to best suit the desired renderer.

Renderer Resource Files should be shipped with any RenderMan renderer and should be
updated on-site by the local system administrator to reflect the resources available to a
renderer. Only those sections containing site-specific information can be customized in
this way. The simple ASCII format of Renderer Resource Files makes them easy to read,
modify and parse.

D.3.1 Format of Renderer Resource Files

A Renderer Resource File is broken up into a series of sections delimited by special key-
words. Within each section, all related information is provided using a section-specific pre-
defined format. A special include keyword is provided to simplify the task of customizing
Resource Files. The keywords are as follows:
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##RenderMan Resource-1.0
Must be included as the first line in any Renderer Resource File.]

##Renderer name
Requires the name of the renderer along with any revision or date information.]

##Include file
Allows the inclusion of a specified file. This keyword should only be used in sections
which are modifiable.

##RenderManCapabilitiesAvailable
This keyword identifies the section enumerating the Capabilities provided by the
renderer. The list of capabilities are found in the Header information section and in
Section 1. Each capability implemented by the renderer must appear as one line in
this section. No entries in this section should be modified.

##RendererSpecificAttributes
This keyword identifies the section which enumerates the Renderer Specific Attributes.
These attributes are invoked with the RIB call Attribute. Each attribute implemented
by the renderer must appear as one line in this section with legal RIB syntax. The
class of all parameter identifiers must be declared previously with a Declare RIB re-
quest. If arguments are required for a given attribute, the entry should specify the
default value for that attribute. No entries in this section should be modified.

##RendererSpecificOptions
This keyword identifies the section which enumerates Renderer Specific Options.
These attributes are invoked with the RIB call Option . Each option implemented by
the renderer must appear as one line in this section with legal RIB syntax. The class
of all parameter identifiers must be declared previously with a Declare RIB request.
No entries in this section should be modified.

##ShaderResources
This keyword identifies the section which enumerates Shaders available to the ren-
derer. Both built-in and programmed shaders should be listed here. A RenderMan
Shading Language declaration for each shader must be provided to enumerate the
specific instantiated variables. A declaration may cross line boundaries. This section
can be customized to a specific site.

##TextureResources
This keyword identifies the section which enumerates the Textures available to the
renderer. The name of each texture may be followed on the same line by an optional
string which provides a short description of the Texture. If included, the string should
be preceded by the ‘#’ character. This section can be customized to a specific site.

D.3.2 Renderer Resource File example

##RenderMan Resource-1.0
##Renderer TrayRacer 1.0
##RenderManCapabilitiesAvailable
Solid Modeling
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Motion Blur
Programmable Shading
Displacements
Bump Mapping
Texture Mapping
Ray Tracing
Environment Mapping
##RendererSpecificAttributes
Declare "refractionindex" "uniform float"
Declare "displacement" "uniform float"
Attribute "volume" "refractionindex" [1.0]
Attribute "bound" "displacement" 3.5
##RendererSpecificOptions
Declare "bucketsize" "uniform integer[2]"
Declare "texturememory" "uniform integer"
Declare "shader" "string"
Declare "texture" "string"
Option "limits" "bucketsize" [12 12]
Option "limits" "texturememory" 1024
Option "searchpath" "shader" "/usr/local/prman/shaders"
Option "searchpath" "texture" "/usr/local/prman/textures"
##ShaderResources
surface wood(
float ringscale = 10;
color lightwood = color(.3, .12, 0.0);
darkwood = color(.05, .01, .005);
float Ka =.2,
Kd =.4,
Ks =.6,
roughness =.1)
displacement dented(float Km = 1.0)
light slideprojector (
float fieldofview=PI/32;
point from = {8,-4,10), to = {0,0,0), up = point "eye" (0,1,0);
string slidename = "" )
##Include othershaderfile
##TextureResources
brick
bluebrick
grass #kentucky bluegrass-1 square meter
moss #spanish moss
logo
##Include othertexturefile
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Appendix E

STANDARD BUILT-IN FILTERS

In this section the required RenderMan Interface filters are defined. Keep in mind that the
filter implementations may assume that they will never be passed (x, y) values that are
outside the ([−xwidth/2, xwidth/2], [−ywidth/2, ywidth/2]) range.

E.1 Box Filter

RtFloat
RiBoxFilter (RtFloat x, RtFloat y, RtFloat xwidth, RtFloat ywidth)
{

return 1.0;
}

E.2 Triangle Filter

RtFloat
RiTriangleFilter (RtFloat x, RtFloat y, RtFloat xwidth, RtFloat ywidth)
{

return ( (1.0 – fabs(x)) / (xwidth*0.5) )
* ( (1.0 – fabs(y)) / (ywidth*0.5) ) ;

}

E.3 CatmullRom Filter

RtFloat
RiCatmullRomFilter (RtFloat x, RtFloat y, RtFloat xwidth, RtFloat ywidth)
{

RtFloat r2 = (x*x + y*y);
RtFloat r = sqrt(r2);
return (r >= 2.0) ? 0.0 :

(r < 1.0) ? (3.0*r*r2 – 5.0*r2 + 2.0) : (–r*r2 + 5.0*r2 – 8.0*r + 4.0);
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}

E.4 Gaussian Filter

RtFloat
RiGaussianFilter (RtFloat x, RtFloat y, RtFloat xwidth, RtFloat ywidth)
{

x *= 2.0 / xwidth;
y *= 2.0 / ywidth;
return exp(–2.0 * (x*x + y*y));

}

E.5 Sinc Filter

RtFloat
RiSincFilter (RtFloat x, RtFloat y, RtFloat xwidth, RtFloat ywidth)
{

RtFloat s, t;
if (x > –0.001 && x < 0.001)

s = 1.0;
else

s = sin(x)/x;
if (y > –0.001 && y < 0.001)

t = 1.0;
else

t = sin(y)/y;
return s*t;

}
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Appendix F

STANDARD BASIS MATRICES

In this section the required RenderMan Interface basis matrices (used for bicubic patches).

RiBezierBasis =


−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0



RiBSplineBasis =
1
6


−1 3 −3 1
3 −6 3 0
−3 0 3 0
1 4 1 0



RiCatmullRomBasis =
1
2


−1 3 −3 1
2 −5 4 −1
−1 0 1 0
0 2 0 0



RiHermiteBasis =


2 1 −2 1
−3 −2 3 −1
0 1 0 0
1 0 0 0



RiPowerBasis =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
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Appendix G

RENDERMAN INTERFACE QUICK REFERENCE

G.1 Interface Routines

Graphics State
Function Description
RiAreaLightSource (name,
parameterlist)

creates an area light and makes it the current area
light source. Each subsequent geometric primitive
is added to the list of surfaces that define the area
light.

RiAtmosphere (name,
parameterlist)

sets the current atmosphere shader.

RiAttribute (name, parameterlist) sets the parameters of the attribute name, us-
ing the values specified in the token-value list
parameterlist.

RiAttributeBegin ()
RiAttributeEnd ()

pushes and pops the current set of attributes.

RiBegin ()
RiEnd ()

initializes and terminates a rendering session.

RiBound (bound) sets the current bound to bound.

RiClipping (near, far) sets the position of the near and far clipping planes
along the direction of view.

RiClippingPlane (p0, p1, p2, n0,
n1, n2)

Clip all geometry on the positive side of the plane
described by a point and normal.

RiColor (color) sets the current color to color.

RiColorSamples (n, nRGB,
RGBn)

controls the number of color components or sam-
ples to be used in specifying colors.

RiConcatTransform (transform) concatenates the transformation transform onto the
current transformation.

RiCoordinateSystem (space) marks the coordinate system defined by the current
transformation with the name space and saves it.
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Graphics State (continued)
Function Description
RiCoordSysTransform (space) sets the current transformation to be the one previ-

ously named with RiCoordinateSystem .

RiCropWindow (xmin, xmax,
ymin, ymax)

renders only a subrectangle of the image.

RiDepthOfField (fstop,
focallength, focaldistance)

focaldistance sets the distance along the direction
of view at which objects will be in focus.

RiDetail (bound) sets the current detail to the area of the bounding
box bound in the raster coordinate system.

RiDetailRange (minvisible,
lowertransition, uppertransition,
maxvisible)

sets the current detail range.

RiDisplacement (name,
parameterlist)

sets the current displacement shader to the named
shader.

RiDisplay (name, type, mode,
parameterlist)

chooses a display by name and sets the type of out-
put being generated.

RiExposure (gain, gamma) controls the sensitivity and non-linearity of the ex-
posure process.

RiExterior (name, parameterlist) sets the current exterior volume shader.

RiFormat (xresolution,
yresolution, pixelaspectratio)

sets the horizontal (xresolution) and vertical (yres-
olution) resolution (in pixels) of the image to be
rendered.

RiFrameAspectRatio
(frameaspectratio)

frameaspectratio is the ratio of the width to the
height of the desired image.

RiFrameBegin (frame)
RiFrameEnd ()

marks the beginning and end of a single frame of
an animated sequence.

RiGeometricApproximation
(type, value)

The predefined geometric approximation is
”flatness”.

RiHider (type, parameterlist) The standard types are ”hidden”, ”paint”, and ”null”.

RiIdentity () sets the current transformation to the identity.

RiIlluminate (light, onoff) If onoff is RI TRUE and the light source referred to
by the RtLightHandle is not currently in the current
light source list, add it to the list.

RiImager (name, parameterlist) selects an imager function programmed in the
Shading Language.

RiInterior (name, parameterlist) sets the current interior volume shader.

RiLightSource (name,
parameterlist)

creates a non-area light, turns it on, and adds it to
the current light source list.

RiMatte (onoff) indicates whether subsequent primitives are matte
objects.
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Graphics State (continued)
Function Description
RiOpacity (color) sets the current opacity to color.

RiOption (name, parameterlist) sets additional implementation-specific options.

RiOrientation (orientation) sets the current orientation to be either left-handed
or right-handed.

RiPerspective (fov) concatenates a perspective transformation onto the
current transformation.

RiPixelFilter (filterfunc, xwidth,
ywidth)

performs antialiasing by filtering the geometry
(or supersampling) and then sampling at pixel
locations.

RiPixelSamples (xsamples,
ysamples)

sets the effective sampling rate in the horizontal
and vertical directions

RiPixelVariance (variation) sets the amount computed image values are al-
lowed to deviate from the true image values.

RiProjection (name,
parameterlist)

sets the type of projection and marks the current
coordinate system before projection as the camera
coordinate system.

RiQuantize (type, one, min, max,
ditheramplitude)

sets the quantization parameters for colors or
depth.

RiRelativeDetail (relativedetail) The relative level of detail scales the results of all
level of detail calculations.

RiReverseOrientation () causes the current orientation to be toggled.

RiRotate (angle, dx, dy, dz) concatenates a rotation of angle degrees about the
given axis onto the current transformation.

RiScale (sx, sy, sz) concatenates a scaling onto the current
transformation.

RiScreenWindow (left, right,
bottom, top)

defines a rectangle in the image plane that gets
mapped to the raster coordinate system and that
corresponds to the display area selected.

RiShadingInterpolation () controls how values are interpolated between
shading samples (usually across a polygon).

RiShadingRate (size) sets the current shading rate to size.

RiShutter (min, max) sets the times at which the shutter opens and
closes.

RiSides (sides) If sides is 2, subsequent surfaces are considered
two-sided and both the inside and the outside of
the surface will be visible.

RiSkew (angle, dx1, dy1, dz1,
dx2, dy2, dz2)

concatenates a skew onto the current
transformation.
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Graphics State (continued)
Function Description
RiSurface (name, parameterlist) sets the current surface shader. name is the name

of a surface shader.

RiTextureCoordinates (s1, t1,
s2, t2, s3, t3, s4, t4)

sets the current set of texture coordinates to the val-
ues passed as arguments.

RiTransform (transform) sets the current transformation to the transforma-
tion transform.

RiTransformBegin ()
RiTransformEnd ()

saves and restores the current transformation.

RiTransformPoints (fromspace,
tospace, n, points)

transforms the array of points from the coordi-
nate system fromspace to the coordinate system
tospace.

RiTranslate () concatenates a translation onto the current
transformation.

RiWorldBegin ()
RiWorldEnd ()

Starts and ends the description of the scene
geometry for a specific image.

Geometric Primitives
Function Description
RiBasis (ubasis, ustep, vbasis,
vstep)

sets the current u-basis to ubasis and the current
v-basis to vbasis.

RiBlobby (nleaf, ncode, code,
nfloats, floats, nstrings, strings, ...)

requests an implicit surface.

RiCone (height, radius, thetamax,
parameterlist)

requests a cone.

RiCurves (type, ncurves,
nvertices, wrap, parameterlist)

requests a collection of lines, curves, or ribbons.

RiCylinder (radius, zmin, zmax,
thetamax, parameterlist)

requests a cylinder.

RiDisk (height, radius, thetamax,
parameterlist)

requests a disk.

RiGeneralPolygon (nloops,
nverts, parameterlist)

defines a general planar concave polygon with
holes.

RiGeometry (type, parameterlist) provides a standard way of defining an
implementation-specific geometric primitive.

RiHyperboloid (point1, point2,
thetamax, parameterlist)

requests a hyperboloid.

RiNuPatch (nu, uorder, uknot,
umin, umax, nv, vorder, vknot,
vmin, vmax, parameterlist)

creates a single tensor product rational or polyno-
mial non-uniform B-spline surface patch.
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Geometric Primitives (continued)
Function Description
RiObjectBegin ()
RiObjectEnd ()

begins and ends the definition of an object.

RiObjectInstance (handle) creates an instance of a previously defined object.

RiParaboloid (rmax, zmin, zmax,
thetamax, parameterlist)

requests a paraboloid.

RiPatch (type, parameterlist) define a single bilinear or bicubic patch.

RiPatchMesh (type, nu, uwrap,
nv, vwrap, parameterlist)

specifies in a compact way a quadrilateral mesh of
patches.

RiPoints (npoints, parameterlist) requests a collection of point-like particles.

RiPointsPolygons (npolys,
nverts, parameterlist)

defines npolys planar convex polygons that share
vertices.

RiPointsGeneralPolygons
(npolys, nloops, nverts, verts,
parameterlist)

defines npolys planar concave polygons, with
holes, that share vertices.

RiPolygon (parameterlist) nverts is the number of vertices in a single closed
planar convex polygon. parameterlist is a list of
token-array pairs where each token is one of the
standard geometric primitive variables or a vari-
able which has been defined with RiDeclare .

RiProcedural (parameterlist) defines a procedural primitive.

RiSolidBegin (operation)
RiSolidEnd ()

starts and ends the definition of a CSG solid
primitive.

RiSphere (radius, zmin, zmax,
thetamax, parameterlist)

requests a sphere.

RiSubdivisionMesh (scheme,
nfaces, nvertices, vertices, ntags,
tags, nargs, intargs, floatargs,
parameterlist)

requests a subdivision surface mesh.

RiTorus (majorradius,
minorradius, phimin, phimax,
thetamax, parameterlist)

requests a torus.

RiTrimCurve (order, knot, min,
max, n, u, v, w)

sets the current trim curve.

Motion
Function Description
RiMotionBegin (n, t0, t1, ...,
tnminus1)
RiMotionEnd ()

starts and ends the definition of a moving
primitive.
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Texture Map Utilities
Function Description
RiMakeCubeFaceEnvironment
(px, nx, py, ny, pz, nz,
texturename, fov, filterfunc,
swidth, twidth, parameterlist)

converts six images in a standard picture file repre-
senting six viewing directions into an environment
map whose name is texturename.

RiMakeLatLongEnvironment
(picturename, texturename,
filterfunc, swidth, twidth,
parameterlist)

converts an image in a standard picture file rep-
resenting a latitude-longitude map whose name
is picturename into an environment map whose
name is texturename.

RiMakeShadow (picturename,
texturename, parameterlist)

creates a depth image file named picturename into
a shadow map whose name is texturename.

RiMakeTexture (picturename,
texturename, swrap, twrap,
parameterlist)

converts an image in a standard picture file whose
name is picturename into a texture file whose name
is texturefile.

External Resources
Function Description
RiErrorHandler (handler) sets the user error handling procedure.

RiArchiveRecord (type, format,
...)

writes a user data record into a RIB archive file.

RiReadArchive (name, callback,
...)

reads RIB from an archive file.
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Math Functions
Function Description
abs(x) returns the absolute value of its argument.

acos(a) returns the arc cosine in the range 0 to π.

asin(a) returns the arc sine in the range −π/2 to π/2.

atan(yoverx), atan(y,x) with one argument returns the arc tangent in the
range −π/2 to π/2 (1 argument) or −π to π (2
arguments).

ceil(x) returns the largest integer (expressed as a float) not
greater than x .

cellnoise(v), cellnoise(u,v), cell-
noise(pt), cellnoise(pt,t)

returns a value which is a pseudorandom function
of its arguments and is constant within each cell de-
fined by integer lattice points, but discontinuous at
integer values. Its value is always between 0 and 1.
The domain of this function can be 1-D (one float),
2-D (two floats), 3-D (one point), or 4-D (one point
and one float).

clamp(a,min,max) returns min if a < min, max if a > max; otherwise
a.

cos(a) standard trigonometric function of radian
arguments.

degrees(rad) converts from radians to degrees.

Du(p), Dv(p), Deriv(num,den) computes the derivatives of the arguments. The
type returned depends on the type of the first argu-
ment. Du and Dv compute the derivatives in the u
and v directions, respectively. Deriv computes the
derivative of the first argument with respect to the
second argument.

exp(x) returns pow(e,x).

filterstep(edge,s1,...) returns a filtered version of step.

floor(x) returns the smallest integer (expressed as a float)
not smaller than x.

log(x), log(x,base) returns the natural logarithm of x (x=log(exp(x)))
(1 arg.) or the logarithm in the specified base
(x=log(pow(base,x),base)) (2 args).

max(a,b,...) returns the argument with maximum value.

min(a,b,...) returns the argument with minumum value.

mix(color0, color1, value) returns a linearly interpolated color value.

mod(a,b) returns 0 <= mod < b such that mod(a, b) = a - nb
for an integer n.
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Math Functions (continued)
Function Description
noise(v), noise(u,v), noise(pt),
noise(pt,t)

returns a value which is a random function of its
arguments. Its value is always between 0 and 1.
The domain of this noise function can be 1-D (one
float), 2-D (two floats), 3-D (one point), or 4-D (one
point and one float).

pnoise(v,vp), pnoise(u,v,up,vp),
pnoise(pt,ptp), pnoise(pt,t,ptp,tp)

returns a value like noise, but with the given peri-
ods over its domain.

pow(x,y) returns xy .

radians(deg) converts from degrees to radians.

random() returns a float, color, or point whose components
are a random number between 0 and 1.

round(x) returns the integer closest to x.

sign(x) returns −1 with a negative argument, 1 with a pos-
itive argument, and 0 if its argument is zero.

sin(a) standard trigonometric function of radian
arguments.

smoothstep(min, max, value) returns 0 if value < min, 1 if value > max, and per-
forms a smooth Hermite interpolation between 0
and 1 in the interval min to max.

spline([basis,] value, f1, f2, ... fn fits a spline to the control points given. At least
four control points must always be given.

spline([basis,] value, array) fits a spline to the control points given in the array.

sqrt(x) returns pow(x,.5).

step(min,value) returns 0 if value < min; otherwise 1.

tan(a) standard trigonometric function of radian
arguments.
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Geometric Functions
Function Description
area(P) returns the differential surface area.

calculatenormal(P) returns surface normal given a point on the
surface.

depth(P) returns the depth of the point P in camera coor-
dinates. The depth is normalized to lie between 0
(at the near clipping plane) and 1 (at the far clip-
ping plane).

distance(p1, p2) returns the distance between two points.

faceforward(N, I) flips N so that it faces in the direction opposite to
I.

fresnel(I, N, eta, Kr, Kt [, R, T]) returns the reflection coefficient Kr and refraction
(or transmission) coefficient Kt given an incident
direction I, the surface normal N, and the relative
index of refraction eta. Optionally, this procedure
also returns the reflected (R) and transmitted (T)
vectors.

length(V) returns the length of a vector.

normalize(V) returns a unit vector in the direction of V.

ptlined(Q, P1, P2) returns the distance from Q to the line segment
joining P1 and P2.

transform(fromspace, tospace, P) transforms the point P from the coordinate sys-
tem fromspace to the coordinate system tospace.
If fromspace is absent, it is assumed to be the
”current” coordinate system.

vtransform(fromspace, tospace, V) transforms the vector V from the coordinate sys-
tem fromspace to the coordinate system tospace.
If fromspace is absent, it is assumed to be the
”current” coordinate system.

ntransform(fromspace, tospace, N) transforms the normal N from the coordinate sys-
tem fromspace to the coordinate system tospace.
If fromspace is absent, it is assumed to be the
”current” coordinate system.

reflect(I, N) returns the reflection vector given an incident di-
rection I and a normal vector N.

refract(I, N, eta) returns the transmitted vector given an incident
direction I, the normal vector N and the relative
index of refraction eta.

setxcomp(P, x), setycomp(P, y), sets the x, y, or z component.
setzcomp(P, z)

xcomp(P), ycomp(P), zcomp(P) gets the x, y, or z component.
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Color Functions
Function Description
comp(c, index) gets individual color component.

setcomp(c, index, value) sets individual color component.

String Functions
Function Description
printf(format, val1, val2, ..., valn) Prints the values of the specified variables on the

standard output stream of the renderer. format
uses ”%f”, ”%p”, ”%c”, and ”%s” to indicate float,
point, color and string, respectively.

format(pattern, val1, val2, ..., valn) Returns a formatted string (using the same rules as
printf).

concat(str1, ..., strn) Returns a concatenated string.

match(pattern, subject) String pattern matching.

Shading and Lighting Functions
Function Description
ambient() returns the total amount of ambient light incident

upon the surface.

diffuse(N) returns the diffuse component of the lighting
model.

phong(N, V, size) implements the Phong specular lighting model.

specular(N, V, roughness) returns the specular component of the lighting
model. N is the normal to the surface. V is a vector
from a point on the surface towards the viewer.

specularbrdf(L, N, V, roughness) returns the specular reflection contribution of a
particular light direction.

trace(P, R) returns the incident light falling on a point P in a
given direction R.
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Texture Mapping Functions
Function Description
environment(name[channel], texture coordinates
[, parameterlist] )

accesses an environment map.

shadow(name[channel], texture coordinates
[,parameterlist])

accesses a shadow depth map.

texture(name[channel] [,texture coordinates] [,
parameterlist])

accesses a basic texture map.

textureinfo(texturename, paramname, variable) gets information about a texture
map.

Message Passing Functions
Function Description
atmosphere(name, variable) looks up the value of a variable that is stored in

the atmosphere shader attached to the geometric
primitive surface.

displacement(name, variable) looks up the value of a variable that is stored in
the displacement shader attached to the geometric
primitive surface.

incident(name, variable) looks up the value of a variable that is stored in
the volume shaders attached to geometric primi-
tive surface, on the same side as the incident ray.

lightsource(name, variable) looks up the value of a variable that is stored in
a light shader attached to the geometric primitive
surface.

opposite(name, variable) looks up the value of a variable that is stored in
the volume shaders attached to geometric primi-
tive surface, on the opposite side as the incident
ray.

surface(name, variable) looks up the value of a variable that is stored in the
surface shader attached to the geometric primitive
surface.

Renderer State Functions
Function Description
attribute(name, variable) looks up the value of a renderer attribute.

option(name, variable) looks up the value of a renderer option.

rendererinfo(name, variable) looks up information about the renderer imple-
mentation itself.
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Appendix H

LIST OF RENDERMAN INTERFACE PROCEDURES

RiArchiveRecord 105

RiAreaLightSource 44

RiAtmosphere 48

RiAttribute 61

RiAttributeBegin 39

RiAttributeEnd 39

RiBasis 69

RiBegin 16

RiBlobby 87

RiBound 52

RiClipping 27

RiClippingPlane 27

RiColor 39

RiColorSamples 36

RiConcatTransform 57

RiCone 79

RiContext 17

RiCoordinateSystem 60

RiCoordSysTransform 60

RiCropWindow 25

RiCurves 85

RiCylinder 80

RiDeclare 14

RiDepthOfField 28

RiDetail 53

RiDetailRange 53

RiDisk 81

RiDisplacement 47

RiDisplay 34

RiEnd 16

RiErrorHandler 104

RiExposure 33

RiExterior 49

RiFormat 24

RiFrameAspectRatio 24

RiFrameBegin 17

RiFrameEnd 17

RiGeneralPolygon 66

RiGeometricApproximation 54

RiGeometry 93

RiGetContext 17

RiHider 36

RiHyperboloid 80

RiIdentity 56

RiIlluminate 44

RiImager 33
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RiInterior 48

RiLightSource 43

RiMakeCubeFaceEnvironment 102

RiMakeLatLongEnvironment 102

RiMakeShadow 104

RiMakeTexture 101

RiMatte 50

RiMotionBegin 97

RiMotionEnd 97

RiNuPatch 74

RiObjectBegin 95

RiObjectEnd 95

RiObjectInstance 96

RiOpacity 41

RiOption 38

RiOrientation 55

RiParaboloid 81

RiPatch 70

RiPatchMesh 71

RiPerspective 58

RiPixelFilter 31

RiPixelSamples 31

RiPixelVariance 31

RiPoints 84

RiPointsGeneralPolygons 68

RiPointsPolygons 67

RiPolygon 65

RiProcedural 88

RiProjection 26

RiQuantize 34

RiReadArchive 105

RiRelativeDetail 37

RiReverseOrientation 55

RiRotate 58

RiScale 59

RiScreenWindow 25

RiShadingInterpolation 50

RiShadingRate 49

RiShutter 29

RiSides 56

RiSkew 59

RiSolidBegin 94

RiSolidEnd 94

RiSphere 79

RiSubdivisionMesh 76

RiSurface 45

RiTextureCoordinates 42

RiTorus 84

RiTransform 57

RiTransformBegin 61

RiTransformEnd 61

RiTransformPoints 60

RiTranslate 58

RiTrimCurve 75

RiWorldBegin 18

RiWorldEnd 18
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Appendix I

DIFFERENCES BETWEEN VERSION 3.2 AND 3.1

Several new API calls have been added to the RenderMan Interface:

• New geometric primitives: RiSubdivisionMesh , RiPoints , RiCurves , RiBlobby .

• New built-in procedural routines suitable to use as RiProcedural primitives: RiProcDe-
layedReadArchive , RiProcRunProgram , RiProcDynamicLoad .

• Reading an existing RIB archive into the renderer at an arbitrary point in the com-
mand stream. RiReadArchive .

• New routines affecting the graphics state: RiCoordSysTransform , RiClippingPlane .

There is no longer an approved K&R C binding of the RenderMan Interface. Instead, only
an ANSI C binding is described. All interfaces and examples are now shown in ANSI C in
this document.

The following data types have been added to the RenderMan Interface: vector, normal,
matrix, hpoint, and to ri.h (as RtVector , RtNormal , and RtHpoint ). The ri.h header file also
now defines an RtInt to be an int, not a long.

The storage classes vertex and constant have been added to the RenderMan Interface. A
vertex primitive variable must supply the same number of data elements as are supplied
for the position, ”P”, and interpolation is performed in the same manner as position. A
constant primitive variable supplies a single data value for an entire geometric primitive
(even an aggregate primitive, like a PointsPolygons ). Descriptions of all the geometric
primitives have been updated to explain the expected number of data elements for each
storage class.

”NDC” space is now a standard space known to an implementation.

Clarified that output depth values are camera space z values, not screen space values.

Clarified that the type parameter of RiDisplay is not limited to be ”file” or ”framebuffer”, but
may be any format or device type name supported by a particular implementation. The
”file” and ”framebuffer” names select the implementation’s default file format or framebuffer
device.

The RenderMan Interface 3.1 Specification was silent on the number of uniform and varying
values supplied for primitive variables on RiNuPatch primitives. The number of varying
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and uniform variables on an RiNuPatch has now officially been deemed to be computed as
if the NuPatch is a nonperiodic uniform B-spline mesh, rather than a single B-spline patch.
Details are given in Section 5.2 where the RiNuPatch primitive is described.

The 3.1 spec implied that Shading Language variable initialization expressions could only
be uniform. That restriction is lifted.

The Shading Language variables du and dv are potentially varying, and are not restricted
to be uniform as the 3.1 specification suggests.

A number of new optional arguments to the Shading Language texturing functions have
been added: ”blur”, ”sblur”, ”tblur”, ”filter”, ”fill”.

Many new built-in functions, or new variants of existing functions, have been added to
the Shading Language, including: inversesqrt, random, transform, vtransform, ntransform,
determinant, concat, format, match, translate, rotate, scale, ctransform, ptlined, filterstep,
noise, cellnoise, pnoise, specularbrdf, attribute, option, textureinfo, rendererinfo, min, max,
clamp, mix, spline, atmosphere, displacement, lightsource, surface, Dtime.

The illuminance statement has been expanded to accept category specifiers.

Shading Language has added new variables: dtime and dPdtime.

Rather than strictly requiring user-defined and nonstandard data to be typed using RiDe-
clare , such tokens can have their types specified “in-line” by prepending the type declara-
tion to the token name.

Renderers may output images composed of arbitrary data computed by shaders, in addi-
tion to “rgb” and so on. Such extra data may also be sent to different output files.

We have clarified that interior and exterior volume shaders are not specific to CSG solids,
but rather are shaders that alter the colors of rays spawned by trace() calls in the shaders
of the primitive.

RiArchiveRecord now takes ”verbatim” as the record type.

We have clarified that in imager shaders, P is the raster space position of the pixel center,
and not the point on any piece of scene geometry.

We have changed the wording of the section that once described the required versus op-
tional capabilities of RenderMan-compliant renderers. A few features previously described
as optional, such as programmable shading, texture mapping, and trim curves, have been
moved unambiguously to the list of requirements. There is still a list of “advanced fea-
tures” that are no longer referred to as “optional,” but it is understood that algorithmic
limitations may prevent some implementations from fully supporting those features.

Object Instances are a bit more flexible in 3.2 than they were in 3.1. In particular, relative
transformations and Motion blocks are allowed within Object definitions.

Some changes have been made to the required standard shaders: they have been updated
to make use of the new data types, the bumpy shader now does displacement instead of
using the depricated bump() function, and there is now a standard background imager
shader.
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A few features previously described are now depricated due to either having been ambigu-
ously articulated, useless, unimplementable, or having been replaced by more recent and
obviously superior features. These are therefore removed from the RenderMan Interface:

• Deformations and transformation shaders have been eliminated. We now recognize
that this functionality is not only ambiguous, but should be considered a modeling
feature, not a rendering feature.

• Bump maps (including the RiMakeBump and the Shading Language bump() func-
tion) have been removed. This functionality is completely subsumed by displace-
ment mapping.

• Support for “Painter’s algorithm” hidden surface removal is no longer required.
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Statement About Pixar’s Copyright and Trademark Rights for the
RenderMan 3-D Scene Description Interface

The RenderMan 3-D Scene Description Interface, created by Pixar, is used for describing
three-dimensional scenes in a manner suitable for photorealistic image synthesis. The Ren-
derMan Interface specifies procedure calls that are listed collectively in the Procedures List
appendix (Appendix F) to the RenderMan Interface document. The RenderMan Interface
Bytestream (“RIB”) is a byte-oriented protocol for specifying requests to the RenderMan
Interface, and specifies a set of encoded requests according to the methods described in the
RenderMan Interface document.

Pixar owns the copyrights in the RenderMan Interface and RIB including the Procedures
List, Binary Encoding table and the RenderMan written specifications and manuals. These
may not be copied without Pixar’s permission. Pixar also owns the trademark “Render-
Man”.

Pixar will enforce its copyrights and trademark rights. However, Pixar does not intend to
exclude anyone from:

(a) creating modeling programs that make RenderMan procedure calls or RIB requests.

(b) creating rendering systems that execute the RenderMan procedure calls or RIB re-
quests provided a separate written agreement is entered into with Pixar.

Permitted Use of the RenderMan Interface by Modelers

Pixar gives permission for you to copy the procedure calls included the Procedures List
and the encoded requests in the Binary Encoding table for writing modeling programs
that use the RenderMan Interface. Any program that incorporates any of the RenderMan
procedure calls or RIB requests must include the proper copyright notice on each program
copy. The copyright notice should appear in a manner and location to give reasonable
notice of Pixar’s copyright, as follows:

The RenderMan R© Interface Procedures and Protocol are:
Copyright 1988, 1989, 2000, Pixar

All Rights Reserved

The right to copy the RenderMan procedures from the Procedures List does not include the
right to copy the RenderMan documentation or manuals, or the programming code in any
Pixar products, in whole or in part, in any manner except as described above.

Written License for Use of the RenderMan Interface by Renderers

A no-charge license is available from Pixar for anyone who wishes to write a renderer that
uses the Pixar RenderMan procedure calls or RIB requests. This license must be in writing.

Limited Use of the Trademark “RenderMan”

The trademark “RenderMan” should refer only to the scene description interface created
by Pixar. Anyone that creates a routine or computer program that includes any of the
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procedure calls from the RenderMan Procedures List statement or RIB requests from the
Binary Encoding table may refer to the computer program as “using” or “adhering to”
or “compatible with” the RenderMan Interface, if that statement is accurate. Any such
reference must be accompanied by the following legend:

RenderMan R© is a registered trademark of Pixar

No-one may refer to or call a product or program which did not originate with Pixar a
“RenderMan program” or “RenderMan modeler” or “RenderMan renderer.”

Nothing in this statement shall be construed as granting a license or permission of any type
to any party for the use of the trademark RenderMan, or any thing confusingly similar to
it, in connection with any products or services whatsoever, including, but not limited to,
computer hardware, software or manuals. Use of the trademark “RenderMan” should fol-
low the trademark use procedure guidelines of Pixar. Any use of the RenderMan Interface,
RIB and related materials other than as described in this statement is an unauthorized use
and violates Pixar’s proprietary rights, and Pixar will enforce its rights to prevent such use.
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